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Generalized Lie algebras or color algebras, as we shall call them, are described by an Abelian
grading group I" and a commutation factor € defined on I'". In this paper I" is assumed to be finite.
It is shown that color algebras with the pair (I',€) can also be considered as color algebras with the
different pair (I"',¢’) and that as a result a canonical pair (I",€_) is possible. It is further shown
that, in fact, a unique “minimal” (I",,¢,) can be used for all algebras with the pair (I',¢).

I. INTRODUCTION

Color algebras are a generalization of superalgebras and
were introduced, from a physical point of view, by Ritten-
berg and Wyler' in 1978. Part of the motivation was to throw
some light on generalized methods of field quantization.? In
1979 Scheunert? studied the algebras from a rigorous math-
ematical viewpoint and succeeded in proving generalizations
of the Poincaré-Birkhoff-Witt and Ado theorems. Perhaps
the most important result he obtained was that there is a
unique “canonical” superalgebra for every color algebra.
Moreover this correspondence carries over to the represen-
tation theory and a simple generalization of the Klein trans-
formation* allows one to obtain all representations of color
algebras from the representations of the canonical superalge-
bra (see Kleeman?® for details).

A color algebra A is firstly a graded algebra. That means
one assigns elements of the Abelian grading group I" to each
element of A and then supposes that the algebra satisfies

a,%bg =c,,.5 a,Bel. (1.1)

One further supposes that there is a commutation factor
e:I' X I'»>C, which satisfies

€la, Ble(Ba) =1,
ela + By) = ela,y)e( B,y), (1.2)
e(a, B + 7) = e(a, B )e(a’Y)'

The definition of the color algebra is completed by sup-
posing that its elements further satisfy

aa°bﬁ == —e(a,ﬁ)bﬁ°aa, (1.3)
Y, erala,olbgoc,)=0. (1.4)
cycl(e, 8,7}
The last equation being a generalization of the Jacobi identi-
ty of Lie algebras.

In order to introduce the notion of a representation of a
color algebra one considers graded vector spaces

V= o V, (1.5)
ael”
and graded linear maps upon such spaces, i.e.,
8:Vp)CVayp (1.6)

The color algebra gl{¥e) is then the set of such maps with a
color algebra product defined by

8.°8, =8, 85 —€la, B8 8- (1.7)
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Usage of (1.2) confirms that this product satisfies (1.3) and
{1.4). A representation is then a homomorphic map of a color
algebra A into the color algebra gl(V,e).

It is fairly clear from the above discussion that a color
algebra A has two essential elements: namely its grading
group I" and its commutation factor €. The basic philosophy
of this paper is contained in the observation that for a given
color algebra it may also be possible to consider it as a color
algebra with a different grading group I"’ and commutation
factor €'. If we add the condition that the representations of
A with (I,e€) are also representations with {(I"’,¢’) then there
seems no reason to prefer (I',€) over {(I"',e’). The essential
result of this paper is that when I'"is finite there is a canonical
set of (I'.,€.), which will serve as grading groups and com-
mutation factors for all color algebras. The €, are almost
determined by the I".—hence the expression canonical. We
shall further show that for all color algebras with (I',¢) there
is a unique (I',,e_) able to replace (I',€). The uniqueness
will be in the sense that any other (I"’,e.) able to replace
(I'e) will satisfy I'. CTI"..

It should be noticed that the scenario described above
has already been carried through by Scheunert in the case
that I" is a vector space as well. The vector space property
enabled him to use certain standard results on canonical
forms on vector spaces. As we shall see below the extension
to the more general case requires a somewhat more basic
approach.

To clarify the above abstract discussion it may be help-
ful to discuss a concrete example.

To this end we consider a color algebra which is graded
by the group Z, 0 Z, Z, ® Z,. Let us assume further that
this color algebra has the commutation factor

e, B)=(—1¢*P), (1.8)
where ¢ (@, ) is a bilinear form given by

¢ (@ B)=aMB. (1.9)

The “vectors” a and B are the decomposition of @ and 8 with
respect to the direct sum decomposition of the grading
group. In other words a has the form

a= (al’az’as’a4)a

witha,€eZ,, a,€Z,,a;€ Z,,and a, € Z,.
The matrix M we shall assume to take the following
form:
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M= (1.10)

-0 O O
e

0 1
1 0
00
1 1 0

Now as a consequence of the results in Secs. IIl and IV it
shall be possible to grade our color algebras by the new grad-
ing group Z, & Z, @ Z, ® Z, and to have a new commutation
factor defined on the algebra. This factor will have the same
basic form as (1.8) and (1.9) except that M will be altered to
the simpler M’ given by

01 0 0
.1 0 0 o0

M=l 0 0 1 (1.11)
001 0

il. COMMUTATION FACTORS

We can immediately deduce from (1.2) a number of basic
results:

é‘(a,a) = t1,
€la,0) =€0,a) =1,

e(a,nB) = €(na, B) = €'(a, B ).
These will be used repeatedly below.

Consider now a finite Abelian grading group I'". The
very well known and old result® concerning such groups is
that they have a unique, up to isomorphism, decomposition
into p-groups: '

r=r,el,e-orl,, (2.2)

with the p; being distinct primes. These p-groups have a
further unique decomposition into cyclic groups of prime
power order,

Ly=2Z,. Z

(p)"

(2.1)

B0z 2.3)

( P.‘)rm ’
and we assume for convenience that r,>r,>->r,,. Now let
us denote the generator of Z(pa" by ¢/ and define

E} =elg}.q)) (2.4)
It follows from (2.2) and (2.3) that an arbitrary a € I" can be
written as

a=Y kig, (2.5)
where th:kf are integers, and so, by using (2.1),
ela, ) =T ENT LI EPH ", (2.6)
is isjisy
with ”
B= Z lig;;

and the first equation of (2.1) shows that £ = + 1.
One can obtain further information on the E § by using

(2.1) to deduce that
(E st (p)" — (E s"t)(l’j)" =1
ij ’

i

2.7)

2406 J. Math. Phys., Vol. 26, No. 10, October 1985

and so if i#;j then Ej = 1, whereas if i = j then E{ is a vth
root of unity with

v =min((p,)" (p;)"). (2.8)
This allows us to decompose € into a product of commuta-
tion factors on the individual p-groups of (2.2):

€la, B) = €\(ay, Bieay, By)-€,(a,, B,), (2.9)
where the a; and §3; are the projections of @ and 8 onto I, .
Finally we may write the ¢;, with the aid of (2.6), as

€la;, B;) =, e (2.10)

with

a,, B:) =kiM,],,
where k; and ]; are vectors with elements {k${} and {/{},
respectively; 7,, is the primitive ( p;)”-th root of unity and
M, is an antisymmetric matrix of integers modulo ( p;)".

It is to be noted that if we had considered finitely gener-
ated Abelian grading groups instead, then one would have
added copies of Z (the integers)to(2.2). In this case, however,
one does not get the decomposition of € given by (2.9) and, in
fact, there may be “cross terms” between the Z groups and
the p-groups. It is for this reason that we defer discussion of
this more general situation to a later paper.

IN. COVERING

We discuss in this section when a grading group I” and
commutation factor € may be replaced. Consider the class
C of color algebras with commutation factor € and grading
group I". Wesay that (I"’,€’) covers {I,¢) if every member of
Cr is also a member of C... and any representation of an
algebra in C,, is also a representation of the algebra when
considered as a member of C... Notice that this relation is
not necessarily symmetric and in fact is a partial ordering—
inherited from the class containment relation.

In order to use this relation we need a more technical
definition of a color algebra than that given in Sec. I. Suppose
we have an algebra A4, whose elements we denote by a’ (i
belonging to some set {2 ), then we may define this algebra
through its structure constants C%. Or, in other words, the
product on 4 is defined through the equation

a'oq! = Cid*, (3.1)
where summation over {2 is implied by the repeated index.
We now say that A is a color algebra with Abelian grading
group I" and commutation factor €, or more briefly A is co-
lored by (I,€), if the following hold.

(a) There exists a map @:2—I" such that whenever
Ci#0 then ¢()) + ¢()) = (k).

(b) € is a commutation factor in the sense of (1.2).

() Ci = —elphd(NCE, Vi jkel.

d Y edk)pNCLCI=0,
cycl(i, j,k}
Vi, jk,m € {2.
It is clear from this definition that 4 will also be a color
algebra with grading group I"' and commutation factor €' if
there exists a map ¢ ":22—I" ' satisfying condition (a), and if
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elg () =€) ")), Vijef (3.2)
In addition (3.2) also implies [upon consideration of (1.7)]
that any representation of 4 with (I',e) will also be a repre-
sentation with {(I"’,e').

A very general situation where (I"',e’) covers (I',€) is
when there exists what we shall term a covering homomor-
phism between I'and I''. We define this as follows: A:I"—>1"'
is a covering homomorphism if (a) it is a homomorphism;
and (b) € and €' satisfy the relation

€la,B)=€(h(a)h(B)), Va,Bel. (3.3)

Toshow that (I"’,&’) covers {I',e) we observe that given
any algebra 4 with a coloring (I",€) we can obtain a coloring
by (I"’,€') with the new grading map ¢’ given by

¢ = ho¢’
which satisfies condition (a) of the color algebra definition
because /4 is a homomorphism. Equation (3.2) now follows

directly from (3.3).
If we suppose that 4 is onto and satisfies the relation

ackerlh)=ela,B)=1, VBeT, (3.4)

then € will be induced from € via (3.3). This is so because if &
is onto then €’ will be defined from (3.3). This definition will
make sense since if thereis a y#a such that 4 (@) = 4 () then
a — yeker(h)andsoela — ¥, B) = lorela, B) =€y, B). A
similar argument holds for the second argument of €. Finally
it is easy to establish that €’ will be a commutation factor on
I"’. The first equation of (1.2) follows from (3.3) and the fact
that € is a commutation factor. The other two follow also this
way with the additional use of the homomorphic property of
h.

Notice that if # were an isomorphism, i.e., 1:1 as well as
onto, condition (3.4) is fulfilled trivially because ker(h) =0
and so (3.4) follows from (2.1).

It should be observed at this point that Scheunert® has
considered what he terms eguivalence of commutation fac-
tors. Thus two commutation factors € and €', defined on the
same I' are termed equivalent if there exists an automor-
phism g:I"—I" such that

€'(a, B) = €( gla), g B))- (3.5)
Itis clear that in this case we can conclude that g is a covering
homomorphism, as is g~'. Thus in our terminology (I,€)
covers {(I',€’) and vice versa.

It is an interesting question as to whether a covering
homomorphism between I and I'’ is necessarily implied
when (I"',€') covers (I',e¢). Weshall provide a partial answer
to this question in Theorem 3.2 below. Before this result is
proved we need a preliminary definition and lemma.

We say that (I',e) is reduced if

ela,B)=1, VBel,

implies « = 0.
Lemma 3.1: There always exists an onto covering homo-
morphism between I" and a I" 7, where (I"’,€”") is reduced.
Proof: We define I, the e-trivial subgroup of I, as fol-
lows:

I'o={aeleay)=1, Vyell}. (3.6)
To see that it is a subgroup of I" suppose a, 8 € I, then
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ela — B,y) = ela.y)e( — B.Y)
=elae”(By)=1, Vyel.
We identify the I"” with I" /I, and choose the homomor-
phism ge '—~I'"/I, to be the natural homomorphism
(Fuchs’), which is onto and has kernel I',, and thus by (3.4) is
a covering homomorphism. As we have seen this means
there is an induced €’. Finally {I"’,€") is reduced since sup-
pose gla) € I" " is an arbitrary element of ", then
€(gla)y)=1, Vyel”
=€l(gla)g)=1, Vyel
=elay)=1, Vyel
=ael,
=gla) =0. O

Theorem 3.2: Suppose (I"',¢’) covers (I',e) then there
exists a subgroup I"*C I"' such that there is a covering ho-
momorphism between I" and the reduced I"* /" 4(I" ! being
the €'-trivial subgroup of I"").

Proof: We begin by stating the following.

Proposition 3.3: There exists a well-defined mapping
h:.'—I'' satisfying

ela,B)=€'(h(a)h (B)).

The proof of this proposition depends on the covering
condition that representations of algebras in Cp, are also
representations of the same algebra when considered as a
member of Cr... We do not present the proof here as it
would require some development of color algebra represen-
tation theory. It may be found in Kleeman.’

We define I"* to be the subgroup of " generated by 4 (I).
The covering homomorphism we require is just the composi-
tion of the map 4 and the onto covering homomorphism

k:I'" —T* /% given by Lemma 3.1. To see this, first we
observe that

ela, B) =€'(h (@) (B)) = €'kh (a).kh (B)),
using Lemma 3.1 and Proposition 3.3, and where € is the

induced commutation factor on I"* /"%, It remains to be
shown that k# is, in fact, a homomorphism. Define

la,B)=khla+B)— khia)— kh(B),
and so

€U (a, B).kh () = €0,y) =1,
Now I'"'* /I"'! consists of elements of the form

k (z n'h (a,-)) =Y n'kh(a,), a;€l,

but

e (e 813 wkh(a)) = T] [T, Bikh ()] = 1.

i

vel.

but since I'*/I'% is reduced this means that /(a, 8) =0,
which in turn means that k4 must be homomorphic. O

IV. CANONICAL FORMS

The obvious question now arises: Does there exist a ca-
nonical set of (I, ,€,.)’s that cover all possible (I",e)’s? We
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provide a complete answer to this question in the case that I”
is finite.

Theorem 4.1: Every color algebra 4, which can be co-
lored by (I,€), where I'"is a finite group, can also be colored
by a (I,,€.). The I', are of the form

r,=r,el,o~el,, (4.1)

where the p; are distinct primes and each p;-group ', , with
P: #2, is of the form

= i 2 .. 2j 1
I,=2Z,.8Z2  .0-8Z;, 0Z,.
2k 2!
©-0Z . 007 o (4.2)

where Z (“p i means the uth copy of the cyclic group of order

(p:)™ For p; = 2 the group has the same form except that an
odd number of copies of Z, are allowed. The €, defined on
the I', have the decomposition given by (2.9), i.e.,

€ = é-162"'6n’
with ¢; defined on the I', . The €; will be unigue in the case p;
#2, and are given by

Yml@ s Brm)
im ’

€; (a’ B) = nﬁl(al'ﬁl)ﬂgz(ait Bz),_,ﬂ (4'3)

with 7, being the primitive ( p,)™ root of unity: a, and 8, the
projections of @ and S onto the copies of Zt o inI’, ; and, for
example, ¥,(c,, B,) is the following antisymmetric bilinear
form defined on copies of Z( ot
J . . o
e B =Y [kT T kT ]. (4.4)
i=1

The k and / are as in (2.5). In the case of p; = 2, €; has the
form

€, B) = v BlegginiCm By _ qypiet. ) (4.5)

where the 7., ¥, &, , and B, are the same as before with the
restriction that r, # 1. The ¢ is defined on the copies of Z, (o’
and B’ being the projections of @ and 8 onto these copies) and
has rwo possible forms (already discussed by Scheunert?).
The first is

q
$la'.B)= > kil
i=1
with ¢ being the number of copies of Z, in I',. The second is
the antisymmetric form

q/2
¢(a,,ﬁl)= Z [kéi—lléi _kéiléi—l]'

i=1

(4.6a)

(4.6b)

Notice that in this case ¢ must be even.

Proof: We shall show that a (I, ,¢,) covers an arbitrary
{I,¢) by considering a sequence of covering homomor-
phisms between I" and I, . It shall be sufficient to restrict the
covering homomorphisms to a particular p,-group with
commutation factor obtained from the decomposition (2.9).
It is obvious that these restricted covering homomorphisms
extend to the whole group—just set the action on the other
P:-groups to the identity.

Let us write the p;-group of I" as follows:

Z'  eZ? ow0Z™ oZ

(P (p)" (p)" (p)™
"2 .o "m
0 Z(Pt)r’ e z (Pl)'m’ (4'7)
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where r, >r,> - >r,,, with the notation as in (4.2). With
respect to this basis of the p-group® the matrix M of (2.10),
which determines the commutation factor on the p-group,
can be written as

M11 M12 Mlm
M. M M.

M= .21 .22 : .2m , (4.8)
Mml Mm2 Mmm

where the M), are the submatrices of dimension n; X n, . Us-
ing (2.8) we deduce that these submatrices have the form

Mfk ___pr, - min(r),rk]Rjk’ (4‘9)

where Ry, is an arbitrary n; X n, matrix of integers modulo
p". Inthe same manner as with M we can break up thek and 1
of (2.10) into subvectors k; and l;, wherej runs from 1 tom, as
in the notation of {4.7).

According to Shoda?® the automorphisms on the p-group
have the expression

ki= > Pk (4.10)
Jj=1
through the k, where the P; have the following form: For
i > j the entries of the matrix P, are integers modulo p”; while
for i<j P; = p" ™ "Q; with Q; having the form of P, when
i>}J; finally one requires that det(P;) not be a multiple of p.
This final condition is to ensure that the homomorphism is
1:1 and onto.
Now given a commutation factor € on our p-group the
automorphism of (4.10) induces a new commutation factor €’
via (3.5), which is given by

€la, B)=ela’, B') = nf*""
and

Ya', B') = (Pk)’M(P]) = k' (P*MP])], (4.11)
or in other words the M is transformed to M’ given by

M’ =P‘MP. (4.12)

As is usual in reduction problems of this kind we shall be
interested in particular types of P, which correspond to col-
umn and row operations on M. From the form of (4.12) it is
clear that a given row operation must always be followed by
the corresponding column operation. The conditions on P
outlined above mean that there are restrictions on the row
(and corresponding column) operations allowed. These are
easily seen to be the following.

(1) For the addition of a multiple of a row to another
row, which we denote by sr, + r, = r}: If r, belongs to the ith
block row (M;); = M; and r, to the k th block row (M,);
= M,; then if (a) i>k, then s may be an arbitrary number
modulo p™; and (b) i < k, then s must be a multiple of p" ~ .

(2) The multiplication of a row by a constant s has the
restriction that s may not be divisible by p. This follows from
det(P,) not being a multiple of p.

(3) The interchange of two rows is only possible when
they belong to the same block row.

Apart from the above automorphisms we shall also be
interested in the following nonautomorphic covering homo-
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morphism: Suppose the mth row in the first block row (M,);
= M, is a multiple of p [this occurs when the mth row of
M, is a multiple of p—due to (4.10)], then there is a covering
homomorphism which maps the Z 7., summand of (4.7) into
a Z( yi1 summand and leaves all other summands un-
touched. This map ¢ is defined as follows: We can write any

element of Z 7., uniquely as

kpi =t 41, (4.13)

with k < p and / not divisible by p" ~ !, Clearly / corresponds
to an element of Z, - and then ¢ is simply given by

dlkpi 14 1)=1 4.14)
To show that ¢ is a covering homomorphism, we first ob-
serve that it is obviously onto by its definition. Second, the
kernel of ¢ just consists of elements of the form kp™ —!
(which is just a Z, subgroup of Z 07 y) from Z 7 ;. and zeros
from all the other summands in (4.7). Given now that the
mth row of the first block is a multiple of p it is clear that if
a € ker ¢ then, a la (2.10), k"M is a vector, which is a multi-
pleofp™ andsoela, B) = 1, VB &I, using the first equation of
(2.10).

Using the above covering homomorphisms we can pro-
ceed to reduce M, ,. For p#2 it is clear from (2.6) that

0 ay; e Ay,
—ay, 0 von a2”l
M,=| —ay; —Gqy; v A3y, (4.15)
—a,, —dy - O

Consider now the first column; two possibilities arise—
either it is a multiple of p or else there exists an a,; not a
multiple of p. In the first case we apply the covering homo-
morphism ¢ of (4.14) to the summand Z (‘p,,, convertingittoa
Z .-+ summand and then relegate the column (and row) to
being in the second block column (or row). Note that it may
or may not be a new block column (or row) depending on
whether 7, = r, — 1. We then restart the analysis with a
smaller (n, — 1)X{n; — 1) M,;. In the second case we multi-
ply the column by the inverse of a,; (which exists and is not a
multiple of p because a,; is not a multiple of p) and then
interchange the second and jth row. Now M, has been re-
duced to the following form:

0 1 ais Qi
’ ’
—1 0 aj, vor az"l
’ ——
n=| —aij —a; 0 e a3,
- a{nl - aén, - asn, o 0

4.16)
We now eliminate all other elements in the first column (and
row) by multiplying the second row by a{; and subtracting it
from the jth row. Now we can multiply the first row by @},
and add it to the jth row—thereby eliminating all but the 1
from the second column. Now M, becomes

2409 J. Math. Phys., Vol. 26, No. 10, October 1985

o 1 o0 0 0
-1 0 0 0 0

0 0 0 bsa by,

Mu=l o o - b 0 By,
0 0 —by, —by = 0

It is obvious that the above analysis can now be applied to the
third column and so on and so we conclude that M, may be
reduced to the form

0
-1
0

© O O

L ap—
M =

[ = = R =
e O = OO

0O 0 0 o
which is of dimension n] X n; with nj <n,.

Now we can use a row operation of type (1) (b) to elimi-
nate all elements in M}, (> 1). This is because elements in
M, (and thus M) have the form kp" ™" by (4.9) and by
{1) (b) we are allowed to multiply a row from M |, by a num-
ber of this form and add it to a row in M}, . It is to be noted
that such an elimination would not have been possible in gen-
eral, if we had not allowed the nonautomorphic covering ho-
momorphism (consider the extreme example of when M,,
consists entirely of zeros).

We have now reduced M to M’ with

W0 . 0

M = 0 _ . {4.17)
: M
0

Clearly now we can regard M as determining a commu-
tation factor on a group with cyclic summands of order
strictly less than p". We may now repeat the analysis of
above on this M without affecting the decomposition in
(4.17). The only complication with continuing the analysis
iteratively is at the end where there may be rows (and co-
lumns) of zeros left. It is fairly obvious that the cyclic sum-
mands corresponding to these rows (and columns) may be
mapped into the trivial group with a covering homomor-
phism. Equations (4.3) and (4.4) are now clear.

In the case that p = 2, (2.6) shows that we may get diag-
onal elements in M and this will interfere with the reduction
process outlined above. The approach we shall follow will be
governed by the nature of these diagonal elements. First, if
there are no such elements then clearly we may pursue the
previous reduction. Second, if there exists an a € I" such that

ela,a)= —1

and (4.18)
e(a,y) = 41, V}’EF,

then we shall show that there exists an onto covering homo-

morphism between I"and a I",.. Third, if there exist elements
satisfying the first equation of (4.18), but none of them satisfy
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the second, then we shall demonstrate a nononto covering
homomorphism between I” and I',. We proceed now to
prove the second case.

First, we observe that if there is a 8 € I satisfying (4.18)
then 8 cannot have the form 2y since in this case

—1= 6( :Bs ﬂ) = 6(27”27) = 64(7/’7/),

which means that €{y,y)# + 1 which contradicts (2.1). We
conclude therefore that 8 must have the form

r,—1

B=e +2e,++2" e,

where the ¢; are the generators of the cyclic summands of I".
Consider now the covering homomorphism g, given by
Lemma 3.1, onto a reduced I"". Consider g{ 8 ), now

€'(g(B).y’) for arbitrary " eI""
= €'(g(B), g(y)) for some y € I'
=€By) = 1

Now since I"" is reduced and

6’(23(8):7/) =1, Vyrerr!
it follows that g( B ) has order 2 and since

€(gB).gB)=€BB)= —1
we have
glB)=¢; +2%¢ + o+ 2770,
with
ole]) = 0(27€}) =« = 02" 'e},) = 2.
From the form of the isomorphisms given by (4.1) it follows
that there exists an isomorphism f mapping g( B) into e].

Now consider any e; with ofe]) > 2 and €'(e],e[) = — 1, then
apply the following isomorphism & to the e;:

kie))=e +e].
However,

elkle)kle)) =¢€lei +ej.ef +ef)= —11.—-1=1,
which means that there are no diagonal elements in the re-
duced M” except those in the final Z, block. We can now
apply the iterative process used in the case of p#2 (which
consists only of onto covering homomorphisms) until we are
left only with a subblock corresponding to the Z, summands.
From there the proof is completed by use of a theorem of
Scheunert.’ ‘

In the third case mentioned above consider an ¢; {nota-
tion as in the second case) with least order such that ele;,e;)
= — 1. Now let the other ¢, satisfying e(e,,e,) = — 1, have
the following isomorphism applied to them:

e, =¢€, +e;.
It is fairly clear that after such transformations only e; will
contribute a diagonal element to M. As we shall see later this
diagonal element cannot be removed to the Z, subblock by
means of an onto covering homomorphism and instead we
put it there by the following nononto covering homomor-
phism: Let e, generate a Z ;',, cyclic summand; then we map

Z ;,, into Z, ® Zz,, as follows. It is clear that any element of
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Z J, can be written as 2k + / with / = 0,1. The covering ho-
momorphism #4 is then given by
h(2k + 1) = (I2k +1) (4.19)

and the new commutation factor on the expanded I'’ will
have a new M’, which will be the same as M except that all
diagonal entries, not belonging to the Z, subblock, will be
zero. In addition there will be a new Z, summand in I’
whose effect on M will be to introduce a single diagonal
element 27~ ' and all new off-diagonal elements will be ze-
ros.

It is obvious that (4.19) describes a homomorphic map
and a little thought then shows that the new commutation
factor we have defined will satisfy the condition (3.3). We can
now repeat the comments that applied for the final reduction
in the second case and obtain the stated result.

V. UNIQUENESS RESULTS

Another important question to be considered is the
uniqueness or otherwise of the canonical (I, ¢, ) for a parti-
cular color algebra. A little thought will show that if (I, ,¢, )
covers {I,¢) and if I', CI", then it may be possible in gen-
eral to extend €, to a commutation factor I, and then obvi-
ously (I, €, ) covers (I',e). Clearly then what we may hope
for is that there is a unique smallest (I, ¢, ) covering (I',€).
More precisely what we shall prove is that there exists a
(I',,e.) covering (I',e) such that any other (I",e.) cover-
ing (I',€) satisfies I", CI" .. Further we shall give a criterion
to determine what this minimal (I".,¢, ) is.

In order to prove the above result we need to introduce a
little machinery from elementary Abelian group theory.
This shall differ somewhat from the standard treatment (see
Fuchs’) and so we shall be forced to state a number of ele-
mentary results in this field. The proofs may be found in
Kleeman.’

First we define two notions of linear independence. We
say that the set {a;} of elements of I" is p-linearly indepen-
dent if o(a;) is a power of p and if

Zn‘a,. =0

means that Vi, n’ = 0 mod p. Second, we say the set {a,} is
p-linearly independent with respect to € if again o(a; ) is a pow-
er of p and if

€ (z nia,-,y) =1, Vyel,

(5.1)

(5.2)

means that Vi, n’ = 0 mod p.

From these two definitions we are further able to define
two notions of rank. We say the p*-rank of I' is the maximal
number of p-linearly independent elements in p*I". A similar
definition holds for p*-rank with respect to €. In the interests
of brevity we use rank when we want to talk of p®-rank and
Li. when we wish to talk of p-linear independence.

The following two results we quote without comment.

Lemma 5.1: The rank of Z, is 1.

Proposition 5.2:

rank (4 & B) = rank (4 ) + rank (B).
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From these we derive the following important corollary.

Corollary: A finite Abelian group is determined unique-
ly by its p*-ranks.

Proof: First, we use Lemma 5.1 and Proposition 5.2 to
conclude that the rank of a p-group I', is equal to the number
of cyclic summands in its unique decomposition (2.3). Now
obviously the rank of pI', is the same as that for I', /ess the
number of Z, summands in T',,. This argument extends in an
obvious way to the rank of p*T",, which is equal to the p* !
rank Jess the number of Z, cyclic summandsin I",. We can
thus conclude that I, is uniquely specified by its p*-ranks.
To extend this result to an arbitrary finite T, it is sufficient to
observe that elements of nonprime power order do not con-
tribute to the p*-ranks of I" by the definition of p-linear inde-
pendence. Hence the p*-ranks of I' determine uniquely the
unique p-groups making up the total group. ]

We examine now the connection between rank and rank
with respect to (w.r.t.) €.

Proposition 5.3: The p*-rank of T is at least as large as its
p*rank w.r.t. €. Equality holds when I is reduced.

Proof: Let a; € p*T" and suppose 2,m'a; = 0. Further
suppose that {a;} isLi. w.r.t. €

=€ (Z m"a,.,y) =1, Vyerl

=>m'=0 modp, Vi,

which means that {a;,} are Li. For the second part of the
proposition suppose further that I" is reduced and now that
{a;} are 1i. Now if

€ (Z m‘a,-,y) =1, Vyel,
then, because I is reduced,

:>2 mia; =0

=>m'=0 modp, Vi

which means that {a, } are Li. w.r.t. €. a

The reason for the usefulness, from our point of view, of
rank w.r.t. € is contained in the following.

Proposition 5.4: The p*-rank w.r.t. € is preserved by an
onto covering homomorphism.

Proof: Suppose h:I'—I"' is the onto covering homomor-
phism and suppose that 4 (@;) € "' are Li. w.r.t. €. Now if

€ (z m'd,-,y) =1, Vyel

=€ (h (2 miai),h (}/)) =1, Vyerl,
which implies, since 4 is onto, that
€ (2 m'h (a,.),y’) =1, Vyerl

=>m'=0 modp, Vi,

and this therefore means that {a,} are Li. w.r.t. €.
Conversely suppose that {a;} are .i. w.r.t €. Now if
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¢ (z mh (a,.),;/) =1, Vyerl"
=€ (h (2 m‘a,-),h (y)) =1, Vyel

=3 (z m"a,.,y) =1, Vyerl

=m'=0 modp, Vi,

and thus we conclude that {4 (a;)} is Li. w.r.t. €'.

Having dispensed with the algebraic preliminaries we
are now able to prove the second major result of this paper.

Theorem 5.5: There exists a unique canonical (I',,€,)
covering (I",€) such that if another canonical (I"’,¢') also
covers (I',e) then I", CI" ;. Furthermore the p*-rank of I', is
equal to the p*-rank w.r.t. € of I" unless there exist 8 € I" such
that ¢( 8,8) = — 1 and none of these /3 satisfy

€By)= 1, Vyel. (5.3)
In this latter case the 2°-rank of I', is one greater than the 2°-
rank w.r.t. € of I"but all other p*-ranks are identical. Finally
the unique (I, €. ) for every (I',¢) is the one achieved in the
proof of Theorem 4.1.

Proof: We begin with the following essential lemma.

Lemma 5.6: 1, C T, then the p*-rank w.r.t.€, of I', is
no greater than the corresponding rank on I, (providing, of
course, that €, and €, agreeon I',).

Proof: Suppose a; € p*I",. Since p*I", Cp*I’, this means
that the a; are also in p*I",. Further suppose that {a;, } is 1i.
w.r.t. €, in I,. Now if

€, (Z m‘a,.,y) =1, Vyerl,

iea (Z miai’yl) = 1’ V?” € Fa
=m’'=0 mod p, Vi,

which shows that {a,} Cp*l, is Li. w.r.t. €,. ]

Now if (I",€’) covers (I',e) then Theorem 3.2 tells us
that I'"/I' contains the image of a covering homomor-
phism from I" and so Proposition 5.4 and Lemma 5.6 show
that this quotient group must have p*-ranks w.r.t. € at least
as large as the corresponding ranks of I" w.r.t. €. By Lemma
3.1 "7/} is the image of a covering homomorphism from
I and so this group has the same p*-ranks w.r.t. €”. Finally,
since I""C I we deduce from Lemma 5.6 that the p*-ranks
w.r.t. ¢ of I are at least as great as the corresponding ranks
w.r.t. € of . We also have the following lemma.

Lemma 5.7: Any canonical (T e, ) is reduced.

Proof: Let a € I', satisfy

€lay)y=1, Vyerl,
and for a p; #2 let s5; be the generator of Z :m)’f’ then we have,
using (4.3) and (4.4), that

1=elas) =€ las) =",
where & 5; is the projection of a onto Z (‘p )7 and the +

depends on whether ¢ is odd or even (f even gives the + ). It
follows immediately that k ; = 0 mod p7 and so k | s} =0.
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Since this holds for all j and ¢ we conclude that & can have no
components in p;-subgroups of I',.. For p, = 2 the argument
is identical, except in the case that copies of Z, have the form
(4.6a) defined on them, in which case we get the simpler
equation ( — 1)* = 1, where ks’ is the projection onto the
tth copy of Z, in T',.. Again this implies that k ‘s’ = 0 and so
we conclude that o = 0. O

This lemma allows us to conclude from Proposition 5.3
that the p*-rank of any covering I", must be at least as large
as the p*-ranks w.r.t. e of I". Now by the corollary to Proposi-
tion 5.2 the p*-ranks of a group uniquely determine it and so
there must be a unique minimal canonical I" ™ with p*-ranks
equal to the p*-ranks w.r.t. € of I'. Clearly then, any (I €, )
covering {(I',e) must satisfy " CT,.

Except in the pathological case outlined in the statement
of the theorem, the proof of Theorem 4.1 has shown that
there exists an onto covering homomorphism between I” and
I, Proposition 5.4 shows therefore that this must be in fact
rmn

In the pathological case we have seen in the proof of
Theorem 4.1 that there exist onto covering homomorphisms
at all but one place in the reduction—where we are forced to
append an extra Z, summand. It follows, again from Propo-
sition 5.4, that a reduction to I" I* @ Z, is possible. Finally we
complete the proof by showing that, in the pathological case,
if I", has 2* ranks equal to those of I" ™ then it cannot cover
I A little thought will show that this implies that any I,
covering I" must satisfy "' "o Z,C ..

Let us assume that a I, with 2* ranks equal to those of
I'™ does cover I'. The covering of I" implies there exists a
covering homomorphism h:I"»I""/I§ with I'"CT,; also
there is an onto covering homomorphism g:.I""—I""/I"{.
Consider now the 2-subgroups of I,I""/I"g,I" " and I'; de-
note them by I',, Q,, I'’}., and I, respectively. Now, by
Ref. 7, the covering homomorphisms 4 and g restrict to cov-
ering homomorphisms I,—Q, and I'" ;. —Q,, respectively;
moreover, it is easily seen that the latter must be onto. De-
note by #I") and r(I",€) the 2*-rank and 2*-rank w.r.t e of I,
respectively. We have, by use of the technical lemmas and
propositions above, the following inequalities:

€)= rh ()€, )<rQn€,) = AT 5 €. )
SNy s€.) = M) = NI y€), (5.4)
which shows that equality must hold amongst all of them.
Now we have seen that I'"/I" ) is reduced and we now show

that this implies that Q,CI""/I'j is reduced. Suppose
a € Q, satisfies

6,(&,}’) =1, V’}/ € er
then it is quite clear from (2.9) that in fact
€lay)=1, VY el /Iy,

and so a = 0, which shows Q, is reduced. We have thus that
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nly.) = n@y€,) = Q,) and hence

I, =Q, (5-5)
A further set of inequalities are
rh ()€, )<rh (T)<AQ,), (5.6)

which, when (5.4) and (5.5) are considered, become equalities
and lead to the conclusion that

h(3)=Q,

Combining 4 with the isomorphism (5.5) leads one to con-
clude that there is an onfo covering homomorphism %
between I, and I,

We define a diagonal element S € I" to be one satisfying
€( B, B) = — 1;such an element must exist in the pathologi-
cal case. Now I'=I", & I'* with I"* being a direct sum of
p#2 groups. The diagonal £ € I must be able, therefore, to
be writtenas S =a + ywitha eI, and y € I'*. Now

—1=¢B,B)=¢la+ya+y)

= ela,alely,y) = ele,a), (5.7)
the last step following from the results of Sec. II. Clearly,
then, a € T, is diagonal, which implies, from the definition
of the covering homomorphism, that k (I';) = I,_ alsohas a
diagonal element. Examination of (4.6a) then shows that I,
must possess a diagonal element satisfying (5.3), but since
I',. is the image of a covering homomorphism from T, it
follows that this latter group must also contain such an ele-
ment. This, however, contradicts the assumption that " is
pathological and so we are done. O

VI. CONCLUSIONS

We have seen that for a finite grading group /" any color
algebra 4 with commutation factor € can also be considered
to have grading group I, and a commutation factor almost
determined by I".. Moreover we have seen that there exists a
unique “minimal” I' 7, which will do the job.

Clearly the next step would be to consider finitely gener-
ated grading groups. Despite the complication mentioned in
Sec. I1 this is not likely to be all that difficult given the math-
ematical machinery that has been developed here. The con-
cept of the covering homomorphism is likely to prove central
to any such extension. Any further extension to more infinite
groups will require more development of the basic work of
Scheunert®—particularly as to the question of multipliers on
such groups.
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Expressions for the I',, I's, and Iy representations are derived in terms of the I'; representations
for neighboring angular momenta. Expressions for I, I';, and again for I are derived in terms of
the I', representations. A third set of expressions for Iy is derived in terms of the I,
representations. With an arbitrary choice of orthonormal sets of the I'}, I',, and I
representations, orthonormal sets of all other kinds of representations are thus well defined and
can be entirely labeled using the parent representations. All Clebsch—-Gordan coefficients are
expressed in terms of those between parent representations (and a few other ones). The I', and I's
representations defined here are not those conventionally used, but they provide a simpler
expression for the fictitious spin coefficients. Tables of the parent representations I";, I',, and I';
are given for quaternary and ternary axes of quantization. Using the usual Clebsch—-Gordan
coefficients of SU(2), these tables allow us to obtain any representation for integer or half-integer

angular momenta up toj = 25.

I. INTRODUCTION

In a previous article,! we gave expressions for cubic har-
monics quantized along an axis of order 4 in terms of re-
duced rotation matrix elements with argument #/2. These
expressions are uniquely defined (to within a sign) only if the
multiplicity of the involved representation is unity.

The number 7,(j) of representations I"; obtained for a
given value of j can be derived from the characters of SU(2)
and of the double cubic group. They are given in Table I,
with their generating functions,>* which we define by

gilx) = S x¥n, ). (1)

Among them, g, (x) has been known for a long time.* Explicit
values for the multiplicities for the 12 first integer and half-
integer angular momenta are given in Table II.

The coeflicients obtained using the standard basis | jm)
of the I', representations, for which the multiplicity is unity,
are very simple, even for the case of j = 23. Their squares are
the products of prime numbers smaller than 2/, divided by a
large power of 2 and also sometimes by 3. The only excep-
tions are for j = 13, where 5 appears to the power 2, and
Jj =14 and 15, when 3 appears to the power 1 instead of the
usual Qor — 1. The coefficients of the I, representations are
similar in the 12 cases for which the multiplicity is unity:
besides some anomalous powers of 3, the only exceptions are
powers of 5 and 7 forj = 17. For all the other representations
where the multiplicity is unity, the coefficients have the
above described form, with only some anomalous powers of
3.

One of the components of the representations ", and I'
spans a complete subspace of D,. When the multiplicity is
larger than unity, this component can be chosen to be diag-
onal in this subspace: the coefficients of the other compo-
nents are square roots of a product of prime numbers smaller
than 2j multiplied by some integer which can be very large. A
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natural labeling of these representations is obtained by at-
tributing the label of the vector of the subspace of D,, which
is one of their components. We shall show later that this
labeling is not always the best.

For the other kinds of representations, when the multi-
plicity is larger than unity, an arbitrary rotation in the sub-
space of these representations can be performed in the hope
of obtaining the simplest possible coefficients. Searches for
Iy, I';, and I'; lead to the results given later in Table V: a
large prime number cannot always be avoided in the denomi-
nator. Such a search for the “simplest” expressions was the
criterium adopted by Butler’ when computing the Clebsch—
Gordan coefficients between all kinds of representations.

In the next section, we show that the coefficients of the
s, I'y, and I'; representations for a given value of j can be
obtained by multiplying the coefficients of neighboring I',
representations by a Clebsch—Gordan coefficient taken from
SU(2). The set of representations obtained in this way is or-
thonormal. So, there is a choice of I', I, and I'g representa-
tions, which can be labeled by the angular momentum / and
the extra label « of the “parent” I', representations from
which they are built. Due to the relative simplicity of the
Clebsch—Gordan coefficients of SU(2) when a low angular
momentum is involved, we believe that the coefficients of the
I's, Iy, and I'g representations are the simplest possible if the
parent I' representations are either nondegenerate or well
chosen. A glimpse at the decomposition into irreducible re-
presentations of the direct product of two representations, as
given in Table II1, shows that the I, I's, and I', representa-
tions are obtained in a similar way if the I, representations
are used instead of I';. Only the I'; representations are left;
the I'; representations can also be obtained from them. So,
when the I'y, I',, and I'; representations are known (and
labeled), all the other kinds of representations are known
(and labeled). However, there are three labelings of I'y repre-
sentations, with respect to the I';, I',, and I'; representa-
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TABLE I. Multiplicities and their generating functions. The second column gives the multiplicity for a given value of j, using the a’s quoted at the bottom of
the table. The generating functions of the last column use x ? instead of x in order to simplify relations between multiplicities for different values of j, integer or

half-integer.
n{j) glx)
r, (a, + 9a, + 8a; + 6a,)/24 “—_ﬁ%l_jx—u)
r, {@, — 3a, + 8a, — 6a,)/24 “—_-;?")&Ts)
r, (@, + 3a, — 4a,)/12 (l——x—f)(dl——x(’)
r, (@, — 3a, + 2a,)/8 ﬁ;"_—is)
I, (@) + a, — 2a,)/8 #ﬁ]
I, (@, + 4a; + 31/ 2a,)/12 “—_";%
r, (@, + 4a, — 3v2a,/12 (Tizlﬁ)ﬁ—x_zls)
a,=2+1 a, = sin{a, 7/2)

a, = 2 sin(a, 7/3)/V'3

a, =V/'2sin(a, 7/4)

tions, respectively; to distinguish between them, we shall
quotethemas Iy, I" ;, and I" {, respectively. The representa-
tions published by Butler’ are the same, to within a sign, as
those constructed by this method, because the consequences
of this construction coincide with the criteria of simplicity in
Ref. 5. However, in his tables established up toj = 8, Butler
gives I'g representations forj = 4 and &, I" ; representations
forj =1, and I'" { representations for j = 3.

In the third section, we study some consequences of
these labelings in all problems which involve Clebsch—-Gor-
dan coefficients, such as the decomposition of a product of
two representations as a sum of irreducible representations
or the computation of the matrix element of a given opera-
tor. Notations in this field vary strongly among different
authors.>!! With the components of three representations

T, jam) = ¥ x2| ju), (2)
"
we define the quantity
(I',.ja r,jao I}j"a")
m m’' m”
i , - j j’ j”
= s amgee(S T T, 3
,‘%‘- SV

which we call the “cubic 3jm symbol” because we consider it
simply as a sum of 3jm symbols of SU(2) weighted by the
coefficients of cubic harmonics. In fact, since all our coeffi-
cients x,{" are real, this cubic 3jm symbol coincides with thef
symbol introduced by Kibler.® The dependence of the cubic
3jm symbol on magnetic quantum numbers # is eliminated
by dividing it by a similar expression obtained with the “ba-
sic” representations

|7 q; M) = z.x;"’lqi #), (4)
m
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which are the representations of the same kind as I; but with
the lowest possible angular momentum. The values of ¢; are
0,3,2,1,2,4,3, and 3 for I'; to I, respectively. Except for
two I'y and a I, or I's representations, writing

(F Ja I';ja’ T J'”a")

A, An

m m m
Vil r:\q’,- i q”. ) 5
m m m

we define what we «call a “3I" symbol”
(Fijal, ja' . j"a”), which is a reduced matrix element.
With two I'; and one I, or I representations, a sum of two
terms has to be written on the right-hand side of (5), the
second of them involving a “second basic” I',, I's, or Iy
representation with the next lowest angular momentum
which is 3, 3, and 3, respectively. In this definition, the cubic
3jm symbols of the “basic” representations are not the V
coefficients’ of the cubic group: for example, with two I,
and a I', representations our cubic 3jm symbol is 7~ !/2 while
the ¥V coefficient is 1. All the 37" symbols are unity between
basic representations. They are the quotient of two reduced
coefficients f(( )) of Kibler or of the 3jm factor tabulated by
Butler by the 3jm for “basic representations.” The reason
why we adopt such definitions is that it allows us to use the
Racah algebra of SU(2) without introducing any numerical
factor coming from the cubic group itself, and also that the
results can be translated by anybody into his own notation.
These cubic 3jm symbols and the first 37" symbols are invar-
iant with respect to a circular permutation of their argu-
ments; for an odd permutation, there is a phase ( —)/*/+/
for the cubic 3jm symbolsand ( — )’ ¥/ +/ =4~ % =% for the
37" symbols.

As seen in Table 111, there are 36 different kinds of 3I”
symbols, including the four cases in which a second term is

=(lija I';je' T J'"a")(
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TABLE II. Multiplicities of the irreducible representations for the first 12
integer and half-integer angular momenta. The last lines give the period of
the multiplicity and the increment: when the angular momentum is in-
creased by the period, the multiplicity is increased by the increment.

! rn r, r, r, rs r, r, r, j

0 1 0 0 0 0

—
(=]
~

o

1 1 2 3

6 1 1 1 12
12 2 R

7 0 1 T2 2
1 1 3 0y

8§ 1 0 2 2 2
2 1 3 ¥

9 1 1 13 2
2 2 3 ¥

10 1 1 2 2 3
1 2 4 3y

m o 1 2 3 3
2 2 4

Per. 12 12 6 4 4 12 12
Inc. 1 1 1 1 1 2 2 1

needed in (5). In fact, the existence of alternate I"; and I"{
representations introduces 57 other kinds of 3I” symbols.
With the definition of the I"; representation for i = 4 to 8, all
these 31" symbols can be expressed in terms of those of the
parent I'y, I';, or I'; representations.

In the fourth section, we consider the results obtained
when one of the three cubic harmonics is a vector, i.e., the ",
representation with / = 1, and the two others are of the same
kind. Except with two I'y representations, the result is diag-
onal. One of the consequences of this result is that the ficti-
tious spin'? is diagonal for the I', and I' representations
labeled as proposed here: labeling with respect to a D, sub-
space as is usual'>' does not provide this property.
Butler’s® I, and I'5 representations are the same but the
numerical value of their fictitious spin is not given by their
label.

TABLE III. Decomposition of the product of two irreducible representations.

In the next section, we give the expressions of the com-
ponents of I', to I'y representations when a ternary axis is
used for quantization. The last section gives tables of I, and
I,uptol =26, I'; up to/ = 25. With the formulas derived
in the second and fifth sections, components of any represen-
tation up toj = 25 can be obtained from these values. Some
examples are given.

Il. EXPRESSION OF OTHER REPRESENTATIONS IN
TERMS OF THE I'y, I';, AND I"'; REPRESENTATIONS

For a given value of the angular momentum /, the
expression of the I'; representation is

|IMla0)= Y af.lim), (6)
m==0(4)

wherea?, = (— )a?_ .. This notation is not the same as that
used in a previous work.! The sum over m is extended to
negative values and, for an odd value of /, m = Q is taken into
account with a vanishing coefficient in order to obtain for-
mulas that are easier to read. The index « is introduced to
label the #n,(/) different orthonormal I', representations
which can be obtained for this value of /.

We shall show beiow that

Fjlas) =(= -G F T
(1 s ] .
xsa( 5 I )w

m=0{(4)
is an orthonormal set of the I', Iy, and Iy representations
for s=1, 1, and }, respectively. In (7) there is only the
Clebsch-Gordan coefficient coupling |Im)|s&) to | ju) and a
normalization constant; the angular momenta dependence is
rather that of the Clebsch-Gordan coefficient coupling
| je)|s — &) to |Im), plus a phase. This result is trivial when
written between basic representations (4) because |so) for
s = 4,1,and }is the basic I'y, I',, and I'g representation of the
cubic group, respectively, as can be seen in Table II.
For a given value of /, the I', representations are

iNIBY = 3 bL(Im), (®)
m=2(4)
where b £, = (— )b £_,,. Here also, the sum over m is ex-
tended to negative values and 8 labels the n,(/) different or-
thonormal I', representations which can be obtained for this
value of /. As above,

nrr, r, I Is r, Iy
r, IO T, T, I r, T,
r, Lo ry r, r r, r,
r, nhL3rh+n+r, I+ T Lo+ 1T Iy Iy e+ I+ T
I, ILOL+1, [\ 4T3+ T 4+Ts T+l +Ta+Ts T+ T 41, T+ Tp+ 20
I Il L+ s D+ I+ 0+ 71 D+ D4 T+ 1 I+ 1% e+ 1Ty T+ 15+ 20
Is I'eIIy s+ Ty I;+ Ty Ii+r, I+ 7T, i+ T,+ 71
I, Il I+ Ty T+ Ty I+T, r+r, N+ la+ T,
I, lle+T,+Ty Lo+ Dh+20 [+ +20 [+ T+ Ts Iyl 4Ty I+ Ty+T,+20+20
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[ j1B8) =€p(— )+ 2s + 12T +1)
sf! s J ) .

x 3 b (! o
is an orthonormal set of I';, I's, and Iy representations for
s =1, 1, and 3, respectively. The value of o is related to & by
0 + 2=06(4). The phase €, can be obtained for each kind of
representation, component after component, using standard
representation in (9): the phase turns out tobe { — )/ +*for I',
and I' representations, 1 for I'y components with |5| = 4,
and — 1 for I'; components with |6 = J. Obviously, we
could choose the phase of I, and I' representations so as to
eliminate this phase, but this is not possible for I'; represen-
tations, already defined by (7).

So, using (7) or (9), the I, to I'y representations can be
labeled by the angular momentum j and the labels / and @ or
B of the parent I', or I', representation. The explicit formu-
las are

[Fujlad) = (=)= 3T +1)
(1Y T
xmazomalm(m o _#)I.I/‘)’ (10)
\[sj1B6) =(— )y ++#32 ¥ 1)
I 1 i )
Xm.=22(4)bfn(m o _#)l-]”>’ (11)
II"(,an&)=(__)1—1/z+,,‘/2(T+—l)
(1Y T,
Xm;w,“""(m 5 _#)rm, (12)
[,/ 188) = (— P+ +#2TFT)
T AT
X Zb,g,(m o _#)Um, (13)

m=2(4)

\Fejlad) =(—)~¥2+maF1 .
o1 3
> a""(m &

m=X4)
and the alternate choice

IFijlB +6)= F(—)22l+1

I3
X bﬁ,(
m;z(q \m +o

i)
? #)lm, (14)

7Y ;
_#)lm),
(15)

where & is positive. In (11), (13), and (15), o + 2=0514).
The I, representations are not given by these formulas.
Their two components are

L1y 0y = 3 o, lim),

m=0(4)
(16)
D1y =3 dp,|im),
m=2(4)
withel_,, =(—)cl, andd?_,, =(—)d}, and ylabels the

n,(/ ) orthonormal I'; representations, which can be obtained
for this value of /. With them can be defined a third equiva-
lent set of orthonormal Iy representations, which is

2416 J. Math. Phys., Vol. 26, No. 10, October 1985

ITzjly £ =(—=)+-V42RI+1)

N T
d
Xm;(q ;;”(m :F% _'u)’j,u);
(17)
,ré'f17i§)=(_)l+j—1/z GTIESY
VLR T AW
Xmezo(qclm (m +1 _”)IJ,LO-

With the first I, and I'; representations and the first
two I, representations given in tables of Refs. 12 and 13, the
first two representations of each kind agree except for the I’
representation with j =J; the I'y representation with j =3
agrees with Ref. 13 but has opposite signs in Ref. 12.

In order to prove that Egs. (10)~(15) and (17) define or-
thonormal sets of representations, let us consider the scalar
product of two components:

(ri, v &1|Fizjlz v28,)
h—si+81+h—5+8

= €,6( —)

X(2sy + 1)(2s, + 1)21, + 1)20, + 1)

Vi V2
X z x’l"'lxlzmz

X(ll 5 J )(12 52 J )’ (18)
my, oy —p/\my; 0; —H

where x stands for a, b, c, or d; v for a, 5, or ¥; and € is an
extra sign which appears in (9). It is convenient to define

N({LM)=(— )2 +1
L, L, L

vi V2
X z x’l’"lxlz’"z(
m,

mymy

S W) 0

from which the product x;,, x>, can be obtained using the
orthogonality properties of the 3jm symbols and inserted in
(18). The result is

<Fi|j11 o, jl v, )
=6 — )" TN + 025, + )2, + 1)

L
xser+nfy 7]
5 05 L
X(02 — o, M) NILM), (20)

which implies L<s, + 5,.
If the parent representations are both I'", or I, represen-
tations, the vector

;N(L,M )ILM ) (21)

is a I'; representation and the allowed values of L are 0,4,6,
etc. Therefore, 0 is the only value allowed in the sum of (20).
If the parent states are both I'; representations, the vector
{21) can be a mixture of I'y, I',, and I'; representations and
the allowed values for L are0, 2, 3, etc.; but s, + s,<1and the
sum in (20) is again restricted to L = 0. So, when both parent
representations are of the same kind,
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<Fi,j11 Y1 &drizjlz v, 8,)
= 5:,525010251112N(0’0)’ (22)

N(00) = Yxp, X%, =8,

If the parents are a I, and a I, representation, respec-
tively, the vector (21) is a I", representation and the mini-
mum value of L is 3. There are no terms in the sum of (20)
except when used to compute the overlap between a I'y and
I ; representation. With the notations defined by (3) and (5)
and taking into account the coeflicients
by, = — b, _, =272 of the basic I', representation

N(3,+2)= i(yz“)m (r he LS T 33)

2 0 2 2
172

- i((ZITIH) (N LLB I3 (23)
and
(rsjlla‘ﬂr:zjlzB&)

= (=)L R, + )
3 3 3
X {Mha LB ), (24)

L L

where

(4 b+ 40 = L+ 30—+ 3 ) — P+ — )

R

1/2
. 25
257 bt b+ 40—+ U -+ P+ 9 —J DL+ s)!) 23)

If one of the parent representations is a I, representation and the other a I', or I', representation, the vector (21}isa I,
representation and the value of L is 2. As in the previous case, V (2, 4 2) can be expressed in terms of the 37" symbol involving
the parent representations and the basic I'; representation for which the angular momentum is 2. We get

i 3
(Taihad|lgjlys) =(— 2@ T IEE+ 1)
1

or

(FijLB&IN;jLy o) =(—)"9Rh + 12, + 1){

where

2

2
j](rllla I;Ly T332 (26)

1

j}(rzl.ﬂ Iy ), 1)

[i i 2] I i ((11 + L+ 3G — L+ 2 — L+ 20+ — M+ — %)!)‘/2

L' L J 25

X[U—L+L+j+3)] -1z,

The I'y, I'j, I' { representations are independently de-
fined. They coincide for the two lowest angular momenta.
They must not be confused even if there is only one represen-
tation. For example, the parent of the I'; representation for
Jj=2.5 and j = 3.5 is the I', representation for / = 4, the
parent of the related I” ; representations is the I, representa-
tion for / = 3: the coefficients of the 'y and the I" ; represen-
tations for j = 2.5 are identical and those for j = 3.5 are op-
posite.

Formulas (7) and (9) cannot be extended to a larger value
of s because the sum in (20) does not reduce to a single term.
When multiplied by |so) with s larger than 3, a I') represen-
tation generates at least two different kinds of representa-
tions with different normalizations. For example, a I'; and a
Iy representation are obtained with 5 = 3. In this case, the
representations obtained from /=j — 3 are orthogonal to
those obtained from / =j + 3 and are a complete set for the
I, representations because n,( ) is the sum of n,(j — 3) and
n,(j + 3). Unfortunately, the I";, representations obtained
from a set of orthogonal I'; representations with the same
I =j 4 3 are not mutually orthogonal. In fact, their norm
and their mutual overlap depend on the cubic 3jm symbol of
the two I'; parent representations and the I'", I = 4. There-
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B+ L—=200 —j+ P+ + P — L+ P+ — )

(28)

fore we could get a set of orthonormal I, representations
from a set of I'; representations which diagonalizes the in-
variant polynomial of degree 4; such representations would,
however, have the inconvenience that the square of their
coefficients is not a rational number.

Relations (10}15) and (17) are the only ones which can
be used to generate an orthonormal set of representations
without condition on the parent representations. They are

related to the following relations between multiplicities: -
+1

AJ) = ! 11»
nyl j) Izg‘,_”n()

ix1
ns(j) = z nyl),
1=j—1
j+172 :
n)= 3 ml) (29)
I=1i=172|
j+172
nij)= z nofl),
1=j=1/2
Jj+372 j+372 ji+172
ng(j) = 2 nyl)= 2 ny(l)= 2 ny(l),
1=|5=1372| 1=7=372 1=j=172

which can also be checked on the generating functions of
Table I as
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g4x) = (1/x* + 1 + xAg,(x) — 1/x* — 1,
(30)
gslx) = (1/x% + 1 + x%)g,(x),

Hi. THE 3/m SYMBOLS OF THE CUBIC HARMONICS

The cubic 3jm symbols defined by (3) between any three
kinds of representations can be expressed in terms of those
involving the parent I'y, I',, or I'; representations. This
expression is

(ri, Jlivt rizjzlzvz Fi3j313v3)

&, &, 2
= 2 A (5,5,53;010,05,kLM )
KM

X;B (J1J2d3 5182 Ll L 'kL)

X C(L, iy, Dy, Lvain L'\ T, LvsiigLM),  (31)

where
A (5155530100 3;kLM )
={—)"" e, 6,62k + 1
K k) ( 85 k L)
X(a'1 o, k/\—0g; k M, (32)

is the dependence on magnetic quantum numbers,
B (j1J2Jss15201 DL "KL )
=(=)"ETL + INRE+ TR+ 1)
XV(2sy + 1)(2s, + 1)(2s3 + )2/, + )2, + 1)2; + 1)
oo o kipE T
L, I, L' 2

(33)

describes the dependence on angular momenta, and

C(L, Iy, T, Lvyimy L'\ T, Ly, LM )

=(=VVRL'+1) 3 XX, Xiom,

mmym,M’

L L)( L1 L)
x(m1 m, M'/J\—-M' m, M)’ (34)

in which I',, are the parent representations of the /'; and x7,,

their coefficients, is the only part which does not involve
only geometrical coefficients of SU(2). In (32) and (33), the
triangular relations give |s; —s,|<k<s,+5, and
|k — s3] <LKk + 53, so that the largest value of L is 4 and
occurs only for two I'y and a I', or a I'5 representation. The
values of L are also limited by (34), which are the coefficients
of a representation of the cubic group for the angular mo-
mentum L: as the product of the parent representations can
beonly I'y, I',, or I'; representations, the possible values of L
are 0, 2, 3, and 4. Combining those two limitations, there
appears only one set of values (k,L ) in the sum (31) except for
a cubic 3jm symbol dealing with two I'y, I" {, or I § and one
I, or I’ representation, in which cases there are two sets
(k,L ). When the product of the three parent states includes a
I, representation, i.e., when there is a cubic 3jm symbol
between the parent representations, the first term is
(k = s3,L = 0) and the second term is (k =, + 5,,L = 4) if
no parent representation is I, and (k = 5, + 5,,L = 2) oth-
erwise. However, for I, I'gy 'y and I Ty, only L =2
exists because L = Qis not allowed with the values 0, 4, and 3
for s. With the five other combinations of parent representa-
tions for which there are no cubic 3jm symbols, L = 3 if
there is no I'; representation among them and L = 2 other-
wise; the values of k are k = L — s, for the case L = 3 and
k=s,+s, for the case L =2 which occurs only if
si+85,+s3=L+ 1.

For L = 0 the relation (31) reduces to

LS

o, 0, 03

(Fi, Jilm rt,jzlz"z ri, Jslsvs

o s
X481 $ 83 (
L L L

) = €163 (25) + 1)(25; + 1)(28; + 1)2, + 1)25 + 1)25 + 1)

5, s;) (F wlvi Lphvy T psl3v3) 35)
3

A A A
a2 m, m, my

When all the I',, are I'; representations and when there is only one 37" symbol, this symbol is

(Fi, Jdmy ri2j212V2 F13 Jalsvs) =\/(291 + 1)(2s, + 1)(2s3 + )27, + 1)2], + 1)215 + 1)

jl j2 j3
X{8, 8, St (Lpdwy Tobyv, T, lws). (36)
L 5L 4
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In all other cases, the dependence on s,,5,,5, is more compli-
cated.
For L 70, the expression (34) can be rewritten as

C (L, IR Ty, yyvoig Ty Ly s, LM )
I ly, T Ly, L'V
= 2L'+12( pth T V)

IRY%

m, m, m’
r,L'v I,lwv, I.L
X( rA'V pis 3 A~ )xL'M, (37)
mn my

where I'; stands for I, I',, and I'; when L = 2,3,4, respec-
tively, and x, ,, are its components. The sum on i’ and v'
extends over all kinds of representations which are obtained
in the product of I', and I', with the angular momentum
L'. The sum on /' reduces to only one kind of representation
except with I', and I',, being both I'; representations: this
case can be avoided using permutation symmetries except
for three I'; parent representations, in which case thereis no
problem because L = 0 is the only term of the sum. How-
ever, a careful look at all possible cases shows that the sum
over I'; reduces to only one term, even if I', and I',, are
both I';: in that case, for the L =0 term, I, is T, i for the
L=2term, I, canbeonly I'yor I';,and I'; is I';.

Shifting the components x; ,, from C to 4, i.e., using
C'=C/x. ) and A’ = 4x, ,,, all the dependence on mag-
netic quantum numbers is gathered in the coefficient 4 ‘. This
coefficient is proportional to the cubic 3jm symbol between
basic states or a linear combination of these cubic 3jm sym-
bols and those for which the third basic representation has
been replaced by the next basic one. So

(F iWJ dvi T iy Jobove T, i fsla‘Vs)
g, 0, 03
= (ri, Jdwy Fi, J2hav2 Fi, Jalsvs)
w9y V9, V4,
X(?’A : rA )
03 o, 3

+ (ri, Jlv Fi2j212V2 Fi3j313v3),

X(Yiiqil 7iiqi2 Viiq;,). (38)
(4 4 g3

When there is only one 3I" symbol ‘
Ly jdvi Ty jalove Ty jalsvs)
= D (i iy, ixkL ); YRL'+1)
X B (fyJ2j818201 1L "KL )
XE(F o Vil p, lvol: L'V)
XLV, v, I;L), (39)

where
D (iy,ipis;kL )
= A (515,53,010,05KLM )x; 5

(Vm 9. Vo9, Yi4: )
X A A ~
m, m;, m;
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X(r,~q.~ Yosps Vg,-)

Aom, M
—1
% (?/t: ql] ?/l‘z‘qlz 7/11 ql3) ( 40)
0, o2 4]

does not depend on magnetic quantum numbers but only on
the kinds of representation involved. In fact, there is a small
dependence on quantum numbers via a phase ( — )/ for I's
and I'; representations. These coefficients are given in Table
Iv.

When there are two 3I" symbols, a permutation of the
third representation with one of the first two ones must take
into account the relation

(nl e ni)
Gy 0, 0O
_\/ﬁ((s% Va3 7’43)=0 (41)
3 \o, 0 O
or

G )
vy o
4 \/_3—5_ (7’8%

1 7’53) _
5 =0.

6'2 &3 (25}

In the general case, the 37" symbols are a sum over the
two values of (k,L ) with the coefficients listed in Table IV. In
many cases one of the two terms vanishes: indeed, using (31)
for the basic representations, only the first term (lower L or
lower &k ) remains and, using (31) for two basic representations
and the next basic in the third place, the first term vanishes
and only the second one remains. Only nonvanishing coeffi-
cients are given in Table IV,

In conclusion, the cubic 3jm symbols and the 3I" sym-
bols can be expressed in terms of those of the parent repre-
sentations when they exist and when there is only one 3I"
symbol. In the other cases, they can be expressed in terms of
““5jm symbols” or “5I" symbols” involving, besides the par-
ent representations, a neighboring I, , the I', representation
with L = 4, or the basic I, or I'; representations.

IV. ON SOME PROPERTIES OF THE LABELING

When one of the parent representations is the I'; repre-
sentation for L = 0 and L = Ois the only term in (31), the 3I"
symbol of the parent representations reduces to the orthon-

ormalization condition of the two other parent representa-
tions

(ril Jdv, ri2s20 Fi,fsls"s)

&, o, &,

=(=)trurhitug €0 25 + 1255 + 1)
§1 852 5\ ]|85 5 8

N L R T TR
o, 0, o/ \j I, j, i T “3)
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TABLE 1V. Coeflicients D (i,,i,,is,k,L ) as defined by formula (39). They
should be read columnwise. Example: D(F,[,,15,2,3) = — TV3/v5.

TABLE 1IV. (Continued.)

= (RN ks L i [ Coefficient
hiyly k L i i Coefficient
I";r;r; 0 0 r‘ I‘l 3 FJ“I“ 1 (4] I‘“ r‘ 1 .
nn, 0 0 n L 1 LIl 2 3 r, n, -3
I\l o o n, I, 5 oL, o o . I -7
rr,r, 1 0 r, r, 1 LJIT 2 2 I I, -27
NI 1 o I, I, 375 LI, 2 K O L
NI 3 0 r, I, 1 LISl 1 0 r, r, - 75
n,r,r, 3 0 T, I, 173 ¥ 7 9 ) 0 r, r, 1
o o o i 0 r, r, 1 07 9% 4 i 0 r, r, 1
J o¥ o¥ o4 3 3 r, r, -7 IJrery i 3 r, ry -7
nryry 3 2 I, r, 5272 Iy 3 2 I, r, /2
I\Mil i 3 rn, n, 7 LI, } 0 r, r, -5
nr.r; 3 0 r, r, 72 ranr i 3 r, r, —7°/3
rrir; 3 2 r, r, 572 rJaLry 3 0 I, r; ~-72/'3
norir, } 2 r r _5 LIy H 2 r, n —57/3
! s 3 3 T 07 2% oA i (4] I T, 1
n\rir; 3 2 I,y I, 527 r.r.r. 3 r ! 2
roror: ) 0 r, r, 522 al gl i Py r, 7?73
L 0T 3 0 r r, 1
Lr. 21' 0 0 r I 1 4 stse 1 1
T irar : Y 0 I‘: 1“; 5 T elei2) 3 4 Iy r, -23
oY o o 1 0 I, r -7 rrr i 3 r; r, -7
Ry 1 0 r, I -1 LI 32) 3 3 r, I, 273
;,r{, 1 0 r, r, 7 ) o o o4 i 2 r, r 5/2
I‘:ﬁl‘: g g 5_‘; ;1 - ; , rJr.ri) 3 2 r, r, 5%/3
2 2 -
rZFS‘r; 3 0 rl 1"2 -7 ‘r4r;r6 ; 3 Fz Fz 73
nr,ry 3 2 I, r, — 517 rrrn, ) 0 I, I, —7%/3
n,rir; 3 0 r, r 1 rJrir, 3 3 r, r, =37/
nLryr 3 3 r, r, -7 3 3 r, r, 24P/5
rrir; i 2, sn rrir@ 3 3 L L PP
Lriry 4 2 r, r, —~52 i 3 r, r, —2.3.7%/5
n,ryr; ) 2 r, r; 2.5.7 I Jryry 3 0 r, r - 37%/5°
riry 3 Y r, r, 5 3 4 ry ¥ 2 2 3.7/5°
L o o r, L 1 royire o3 0 L L SPTRS
i, .0 0 r, r, 7 $ 4 Iy r, —~2.33.7%/5%
P ¥ 29 % 0 0 r, r, 5 rriry 3 2 r, r, - 3275
1",1’.1} 1 2 F3 r; 52 ; 2 [‘3 I"2 — 2472/5
f.{.‘? ; g ? 5} 2__527 57 L,riri2) 3 2 r, r, - 25.7%/(3.5)
AT, 1 3 r 231 i 2 r, I, 2375
Il i 2 ry r, -5 LIl 3 2 r, I3 —~5/2
LIy y 2, I, 257 Rl P2 L L -3
rrr } o r r 5 Iyl ) : rn, n, sn
2
Iyl i 2 r, I —2.%° " i 2 ph ik “2'252
rnry i 2 r, r, 257 rring | 2 r, r, =253
r,rry } 0 r, r, 2.5 . 3 2 r, r, — 543
I\Ils i 2 ry r, -8 Lrir; } 2  p y - 57
PSI‘BI‘7 ; 2 rg r3 —2.5 ; 2 F3 F3 -2%5.7
a8 g% % 3 2 r, n, ¥ rriri@ 4 2 ry ;o 2513
nrr; i 2 r, L, 257 o ¢ 2 L L 2398
Loy i 2 r, n, s s i 0 L L -3
. 2
il 3 2 r, r, 251 - i 2 Lon -8
nrir, j : rn, r, 21 rrecga 4 0 L L 233
r,riry . i 2 r, I, 2357 3 2 b T - SI2°3)
FJ‘F; ‘ i 2 I-3 FS 22.72 I‘,I"sl‘, 0 0 l", !‘, 3.7/5
,ryrs 3 2 I, Iy 5.7%/2 Irr, 2 2 Ty Ty —-35
I‘g § 1"6 5 I"‘ I‘l 3 ) o o8 o 2 3 r, r, —327%/5
aE i 1 2 rJrer, ! 0 r T, 7/3
I‘,I";‘I'. l 2 I‘, I", - 52.7/22 Psrors ; 3 rz rz 3.7%/5
LIl i 2 L, L, 5T LIy 3 0 L, L 3T
ILriry } 0 r, r, 5.1/2 ol Nl 3 2 r r, 372
rJ.r, 0 0 r, r, | Il 3 0 I, I, —1/3
I o o 0% 2 2 r, r, 5 ) o o oX 3 0 r, r, 1/3
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TABLE 1V. (Continued.)

e — = e e

TABLE IV. (Continued.)

Iylyly k L i 4 Coefficient by k L i r Coefficient
. 72
’;ﬁ?: i ; ? ? 7,/72/3 3 rryrs 2 3 r, r, /3
Il 3 > ' 23 ,rr, 0 0 r, I, 25
J ol o o 5 3 r, r, 37%/5 nr:r, 1 2 Iy I, 52.7/3
rJa.r, 3 0 r, r, - 173 nror 1 2 L r, ~25.1/3
.3 73/62
rJr.r, 3 3 r, r, 3.27 /53 . o 0 0 r r, i
3 3 r, r, —2%3.7/5 o, 3 3 r, I, 7
IIuly2) 3 3 r, oL 2.7%/3.5% o o¥ o 2 2 r, n, 5
3 3 r, r, —2.32.7%/5% F o ¥ o 1 0 r, r, 1
Jo¥ ¥ att 3 0 rn n —3.7/% Loyl 2) 3 4 r, . ¥7
; . r r Py J ¥ o o) 2 3 r, r, —375
r " N 'r‘ r’ I Ihly(2) 3 3 r, r, -37
Ll 502) 3 1 2 2 ~7/(i-5 ) \ Ir,rir, 3 3 T, r, 7
3 4 I r, - 2.32.7/5 rorir, 0 0 r, r, -7
I ri 3 2 I r, - 37/5 J o ol o 2 2 r, r, —27?
3 2 n, I8 223.7%/5 rr.r, 2 3 r, r, ~7/5
rororie 3 2 r, r 27.7/(3.5) 3 3 r, I, 227%/5
3 2 r, r, 2.3%.7/5 I,rirg2) 2 3 r, r, 223.7%/5
Y o¥ ol O } 0 r, r, ~3.3/5 3 3 T, r, 3.7%/5
rr.r, 3 3 r, I, - 7273 Iy rirs 1 0 r, I, - 3.7%/5%
r,rir, 3 0 r, r, 3.7/8° 3 4 r, r, 2238, 72/5%
5 4 r, r, 22.3%.7/5* L) 1 Y I, I, 22.3.9/5
Lriry2) 3 0 r, r, 25.3/5% 3 4 r, r, 3%/
; 4 rl rl —_ 2.3/52 I"sI“;’I", 2 2 [‘3 F; — 53/2
rJrir; 3 3 r, I, —3.7%/52 ? :}' -:i 3 ; : ? ;} - ;5; -
5 3 r, r, —223.7%/5* 803 3 3 s
rrri 3 3 r, r, —~253.7%/5* LLIrsr, ; i ? ? 5 /; 522
2 21 3 3 .
- 3 3 r, L 27/85) nrir) 1 2 ry I, RS/
I‘,I",l", g 2 I", F, 3.72 2 2 r3 r3 3‘52/(22.7)
i 2 I I, " 237 r,ryr, 1 2 r, r, ~3.5.7/2
r,ryrg2) 3 2 r, Iy 2%3 R ? 2 ;‘, r, - 3.5;7/2
3 2 r, I, 173 9 are o 2 y r, ~13.52
rrirg i 2 r, r, 3.5.7 2 2 r, r, 3.5%72
rsryr, 3 2 I, T, 25.7/3 ryryn 0 0 n, r 7
rrer, } 2 r, r, 3.5.7 ririr, 3 3 r, r, 7
rrery) 3 2 r L, 23.5/33 ryrr, 2 2 n, r, ~57
3 2 r r, —2.5%/3 rrir, 1 0 r, r, - R8s
nrir; 3 2 r, r, —237 3 4 r, I, —24.32.7/52
I,rirs2) ) 2 r r; ~241/3 ryriry2) 1 0 r, r, — 2435
3 2 r, r, — 2252173 3 4 r, r, 3%/5
rrars ) 0 r r, —37 s 2 3 r, r, —3.7/5
r e 2
i 2 r r — 53'7/(2‘3) I‘.I‘,F, 2 2 I‘, I"; — 5 .7
. . . r3 r3 1 r,rir, 2 2 r, I —-257
r:?jl 1 . h o . r;rer, 2 2 r, I, 5.7%/2
4 ! ! r,r:r. 1 2 r T ~3257/2
ol 0 0 I r 7 8 8l 3 3
rﬁrj 1 0 rn rn T e 2 2 r, I, s
ILL, 22 Lo TORE Y R R e
rrir, 1 0 r, , 1 3 3 .
r. 2 3 r r —3.7%/5 ryrsr, 1 2 r; r, -3
rf-‘f}’«, 2 2 r: r; 27 2 2 Ty I, —-3.7
FJ;I} 2 3 I'\z Fz 73 1";1”;'1",(2) l 2 I", I‘, 3.5.7
I Jrir, 1 0 r, r, 3.7/5 2 2 I I =357
J o ot d o} 0 0 r, r, 5 ryryr, 0 0 r, r, 5/2
rJrer, 1 2 I, I, — 572 r;rir, 0 0 n, I, 7
rJarr 1 2 r, r, 3.5.7 ryryr, 0 ] r, r, 5.7/2
Ja¥ o of 0 0 r, r, 13 ryrer, 1 0 r, r, -172
r,r.r, 1 0 r, r, —5/32 i 2 r, I, 52.1/2
Jo¥ o ok 2 2 r, r, —257 ryrerg 1 0 r, r, 2.3/7
I‘-,I‘sn 2 3 I"z I"2 73/3 1 2 1“3 r3 3'52/23
? 7? ofs ; g I, T, /3 ryr:r, 1 0 r, T, —3.7%/5
sl : r, L 5 Lirirg) 1 2 r, r, 352
nrir, 1 .0 r, r, -1/3 - _
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Parent representations of I'; and I'; must be of the same
kind. In this formula the dependence on magnetic quantum
numbers is gathered in the 3jm symbol: component |I's 3)
behaves like |, 0), |I's + 1) like |, F 1), and |, + )Y
like [Ty $/Q Such aformula can be used with s, = 4, 1, or 3,
i.e., thebasic I';, Iy, or 'y representations. The main interest
is when I, is the basic I', representation with j, =5, =1,
which corresponds to a vectorial term in the Hamiltonian.

When this vectorial term is the vector J itself, j, equals j;
and the 3jm symbol associated to the matrix element is the
product of (43) by the reduced matrix element
Gl 191 13 = ,,J,\/h(]l + 1), +1). If I', and I'; are
both I', or I'¢ representations, dividing this matrix element
by the one obtained with basic representations /, = /; =0,
we get

1)j1+ll+sl+ 1\/(251 + 1]/(sl(sl + l))

s; 1 s
i .+12.+1{.1 _1]
\[11(11 N2/, )Jl L j,
><5,‘,35 S

JiJ3

a=(—

(44)

vivs?

which is usually called the “fictitious spin.”'? If I, and I,
are both I' or I', representations, we can divide by the ma-
trix element obtained with the corresponding I, or I, basic
representations and we get the same result. The 6j symbol in
(44) has a simple expression and « evaluates to

a= %[]1(]1 + 1)+ 5408y + 1) = L+ 1)1/ (sofsy + 1)), (45)

which happens to be (J.S)/S% Actually, the operator J has
J

22337 ; _
=23 IR F IR T {1
Lok

=(= 1)L RG + )

1

matrix elements between different kinds of representations.
Some of them, namely those with the same kind of parents,
suchas (I",,Iy), (L, g)s (I s), (5,0 § ), Obey the conditions
of formula (43); a nondiagonal fictitious spin can be similarly
defined, provided (j,| |J| |j;) between basic representa-
tions is replaced by a nonvanishing expression. The result
looks like formula (44), but a simple formula such as (45) does
not hold.

For a I'y representation, the role of the fictitious spin is
played by two coefficients, which are usually'%!%'® chosen as
the mean values P and @ of J, for components |I’ +3) and
|I"8;) The Wigner—Eckart theorem yields

(L lyv, mll Jq |Fs]3 Lvy m3>
=(=V"""G V] 1)

X(FSjlf\lvl 1 Fstla"a) (46)
—my g ms
Using results of the previous section, we get
(Tajlyvi|d|sjlsvs)
Gl 19113
=a(l3|Ny 1|13 +a'(Ts3|l 3|3
= id + W14/3)a’ (T 31T 1|1 3)
(47)
and the correspondence between {e,a') and (P,Q) is
=3P+ Q), o =W7/(53)3Q-P). (48)

The expression for @ comes from L =0 in (31) and is
therefore given by (45). The expression for a’ is obtained
from (31) as

3 (vl Ly4)
4

G+ L+ 50+ =P+ — P — L+ B =L+ 4)

33 172
(25-52 h+L—A T+ MG+ + M T+ =T+ PG — L+ P — L %)!)

X(Dlvs vy, 4.

a' depends on the cubic 31" symbol between the parent repre-
sentations and the I'; representation for / = 4; in contrast to
a it has no diagonality property. For I" ; and I' { representa-
tions, the first coefficient « is not given by an L = 0 term,
and therefore neither a nor a’ are simple. However, the term
L = 0is a combination of P and Q, which is diagonal; these
diagonal combinations are (P + 3Q ) for I"{ and (P — Q) for
ry.

Let us recall that there exists a natural labeling for I,
and I'; representations quantized along a quaternary axis,
since |I", 0) and |I's 2) span the whole subspaces [jO — )
and |j2 — ) of D |I", 0) and |I's 2) can be chosen as the
base vectors of those subspaces and their labels will be those
of these vectors with respect to D,. In case of degeneracy,
this orthonormal set differs from that built in this paper,
which has the advantage of diagonalizing the fictitious spin.

2422 J. Math. Phys., Vol. 26, No. 10, October 1985

49)

I

For example, the multiplet j = 5 contains 2 I',, and the re-
duced matrix elements of J within the natural set are

(Fy50 — [ |J|[T450 —)=14,
(Fy54 —||J]||[450 —) =3/35/8,
(Fy54 —||J| |54 —)= —1.

(50)

Within the orthonormal set built from the I", represen-
tations for / = 4 and / = 6, the reduced matrix elements are

(FyS4||T| |[Te54) =3,
(51)
(L 56| ||| 456y = —3,
i.e., the eigenvalues of the preceding matrix. We can take

another example within 2 I'5 of the multiplet j = 6: the re-
duced matrix elements of J between the natural set are

R. Conte and J. Raynal 2422



(Fs62—||J||s62—)= —1},
(Frs66 —||J||Is62—)= —3/55/16, (52)
(F566 —||J||[s66 —)= —3%,

while those within the orthonormal set built from the I,
representations for/ = 6 and / = 7 are the eigenvalues of that
matrix

(I566||J||I566) =4

(53)
(Is67||J|ITs67) = —3.

When the parent representations |y I ) or |[I', 1 ) are de-
generate, which occurs for the first time for / = 12 or / = 15,
our I', or I'; will be indexed by / and the supplementary label
v of I'y or I',, and their coefficients will not be as simple as
those of the natural set. However, the fictitious spin coeffi-
cients for our set will depend only on /, and not on v.

In Butler’s® tables, the I', representations used in (51)
are labeled by 1 and 0, respectively, and the I' representa-
tions used in (53) by O and 1. There is no relation between
these labels and the properties of the representations.

V. QUANTIZATION ALONG A TERNARY AXIS

With a ternary axis of quantization'’ I' representations
are in the |6 + ) subspace of D, and they are given by for-
mula (6) with m=0(3) and a2, = ( — )'*™a{_,,. Therefore
formula (7) may be used to generate orthonormal sets of I,
I',, and I'y representations. As for I'; representations, they
belong to space |0 — ) and are given by formula (8) with
m=0(3)but with b4, = (—)'*™*'b{_ . Therefore ortho-
normal sets of I, I's and of components + 4 of I"; are
obtained with formula (9), with a summation over m==0(3).
The phases €, are found to be equal to ( — )/ **for I's repre-
sentations and ( — )/ *** %~ 12 for I'; and components + }
of I' ; representations. As for components |I"; + 3), they
both belong to the same subspace |§) of Ds; in this case, the
right-hand side of formula (9) for s = Jand & = + }isin this
subspace |3) but is not a pure |I"; + 3): the correct compo-
nents are

|Fij1B +3)

=2\/m{$% z (—)"3/2+"b,‘,’;,

m=0(3)

A AT

X(m +3 _#)IM
+ 22 5y,

3 »Z5)

/A ) }
X )t - 54
(m Ti —u | (54)
The two components of a I'; representation are defined
by

N1y +1) = Y cwmlim), (55)

m=1 1(3)

A
with ¢;," =(— ) *™¢,2%,. The | + }) components of a I"§
representation are given by

2423 J. Math. Phys., Vol. 26, No. 10, October 1985

ITgjly £1) =220+ 1)

( _ )I+j+#
1(3)

m= +
[ T | )
XeiE j 1) 56
i '(m Ty u lin)  (56)
and the |}) components by

\Iryjly £3)
=\/2(21+1)[—71~—

(_ )I+j+/1cl:'tnr

3 m=x103
X('L ﬂii —ju)lj”)
Ly (g
x(,f, f:% _j#)lju)]» (57

VI. PRESENTATION OF TABLES

The coefficients listed in Tables IV-VIII are expressed
as signed square roots of rational numbers but, for legibility,
the square root symbol is omitted. Tables V-VIII contain
the coefficients of all the parent representations I'"y, I, I'; up
to and including / = 26 for I', and I',, [ = 25 for I';. Latin
lettersa, b, c, ... are used to label degenerate sets. Coefficients
of representations are listed as the signed square root of the
quotient of two integers: a numerator, depending on the co-
efficient, and a denominator, common to all coefficients. Ev-
ery integer is factorized in prime numbers; in the numera-
tors, every prime factor greater than 2j is enclosed in
parentheses, which means that it must be put outside the
square root symbol. All quaternary components have been
gathered in Table V, while ternary components, obtained
from the quaternary components by formula (38) of Ref. 17,
are split into three tables, one for each kind of parent.

We have an example as follows (Table V):

|5 16 ¢ 0)
= (1/2"°.3y3) { - y5.7.17.19.23.29|16 0 + )
+2.3y235.13.23.29|16 4 +)
—2.5/7.13.29]16 8 + ) (58)
+2.37Y257.29(16 12 +)
+11y731|16 16 + )},

T, 16 ¢ 3) =2—l3{\/2_9}16 10 +) + 7|16 14 +)}.
These tables allow all representations Iy, I's, I'g, I'y, Iy,

I'g, I'§ to be constructed up to and including j = 25. For
example, with

VgL T
7,6 = 57164y ——=160) + 316 =4, (59)

we obtain I'; representations for j = 4! and j = 13. They are

R. Conte and J. Raynal 2423
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TABLEV. I, I';, and I'; representations up to / = 26 for I'y and Iy, I = 25 for I'; (quaternary axis). Base vectors are defined by formula {2).! The two components of a I'; are listed on two lines, in the order | I, 0y,
then |I'; 2), like base vectors on top of the table.

o+) [4+) 8+) [12+) [16+) [20+) [24+)
! I' Denominator 2+) [6+) [o+) [144+) [18+) [22+) [26 +)
0o 1 1 1
2 3 1 1
1 1
3 2 1 1
4 1 223 7 5
3 223 -5 7
1 1
5 3 1 1
1 -1
6 1 22 -1 7
2 2 -1 5
3 2 7 1
2t 5 11
7 2 223 13 1
301 1
23 11 ~-13
8 1 253 311 227 5.13
38 2° — 1113 22.7.13 s
1 0 1
3b 2°3 —3257 —225.11 7.11.13
1 1 0
9 1 23 -17 7
2 2 -3 13
3 223 7 17
24 —13 -3
101 23 ~5.13 223.11 11.17
2 23 2.13.19 19 —3.5.17
3a 2°.3° 11.13.17 223.5.17 5
2833 2.5.13.17 5.17 3519
3b 243° 5.11 —223.13 13.17
3 -1 2.13 0
12 23 2.5.17 3* 7.19
3a 1 1 0
2° 2.5.7 717 —17.19
3b 1 . 0 , 1
23 2.17.19 —325.19 —~5.7
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TABLE V. (Continued.)

[0+) [4+) [8+) [12+) {16 +) [20+) 24 +)
! I Denominator [2+) [6+) [10-+) [14+) [18+) [22+) (26 + )
12 la 2735 —21117.23 327.13.17.23 —2.3.5213.19 7.11.13.19
23
b 2195 2.327%.13.19 11.19(47) 2.3.5%7.11.17 321723
2 283 217 —35%7 11.19
3a 2193° —2.5211.13.17 RP17 2.3.19° 7.11.19.23
283 2.527.17 3° 527.11.19
3b 2.3 2.7.13.19 3521119 23.7.1L17 — 1321723
3 —1L19 0 217
B3 1 223 52.19 25 —11.23
2 283 —25.19 1117 17.23
3a 2817 — 3511 —2%11.19 —5,19.23
283.17 217 5.11.19 5.19.23
3b 25317 19.23 —2.5.23 5211
217 (] -23 1
4 1 213 —25117 21113 2.3.13.19 5.19.23
20213 17.19.23 3.11.23 5 —~3%5.7.13
3a 2435 2.7.11.13.17 38572 —2.3%5.11.19 —11.13,19.23
217,335 5.11.17(47) 3.5.19.23? —7%.11.19.23 32.7.11.13.19
23
3b 21.5? 2.7.13.17.19 521119 23517 ~ 13,192.23
217,52 5.17.19.23° —3.5.11(89) 23(149) 7.13.172.23
3¢ P8 19.23 0 0 2.1.17
24,33 82 5.7.13.19.23 3.5.7.11.13.17 7.13.17(37) 32.17(137)
23
151 28 23 ~223.7 513
2a 2'.3.41.43 7.11.13%23 38.19.23 7.11.19° 325.11.13.19
29
2b 254143 32.19.29 —7.11.13.29 3213.23.29 —5.7.23
3a 2511 3.7.23 211 3.57.13
21311 7.13.19.23 —3%11.23 ~ 5.7 —325.13.29
36 2411 —513 0 23
21914 5.19 — 571113 ~5.13.23 7.23.29
16 1a 2435219 72.13.17.19.23 — 223723 225519 22.3%.13(37) 325.13.29.31
b 22.3.5%19 2.3419.31 3.7.13.17.31 ] —17.23.31 25.17.23.29
2 213 5219 — 57213 -3.1.23 3.23.29
3a 293511 5.13517 — 22385713 —-227011%13 2511217719 5419.23.29.31
17219 .19.23 23
2311 3(191) —357213.19 52.7.19.23 — 52.19.23.29
3b 2V7.3611 —7%13.17.19.23 —22.3%7.23(61) 225.11%(73) — 225411213 5.13.29.31(107)
21.3%11 3.5.7.13.19.23 3.23(131) — 57213 5.7%.13.29
3c 2903 —~5.7.17.19.23 22.3%.5.13.23 —285%7.13.29 22.5.7.29(37) 7.112.31
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TABLE V. (Continued.)

[0o+) [4+) 8+) [12+) {16 +) [20 +) 24 +)
! I Denominator [2+4) [6+) [10 +) [14+) [18 +) 22+) 26 +)
.29 .29
2.3 0 0 29 7
17 1 213 5.23.29 2.13.29 32 - 2.3.11.31
2 223 - 3.72.23 31113 53 5.29.31
3a 2'.3.5%7 55.7%.23.29 - 2,11%,13.19% 547 2.3.113.19%31
11,19 29
212.52.7.11 ~ 5.23.29(71) —3.5.11.13.29 ~ 3.29(673) 35.31(67)
19 312
b 23527 0 3.11.31 0 13.29
2133527 - 3.5.11.13.23 — 32523231 1131331 — 1L13.19%.29
31
3¢ 241119 3 0 —5.23.29 0
213.11.19 3(383) — 1113323 5.23(73) 5.23.29.31
18 1la 2°3.7°.13 - 3%17.19.29 2.7%.11.29 22.23.29(37) —2.3223% 3.5.11.17.23.31
ib 2857213 - 11.23(239) 2%.72.17.19.23 —2211.17.19% 22.113.17.19.29 3.5%.19.29.31
2a 2".61 2.3°.13.23.31 22.5.7%.11.31 22.7°.13.31 —13.192.29 - 5.7.11.13.17
.29
2b 2'.3.61 2.3.7.11.23.29 22.3%.5.7.13.29 — 22.11.29(103) 7.11.31(47) —325%17.31
3a 2'43.7.13 32.11.13%.19.23 23.7.17.23(211) 22.5%.11.17 23.3552.11.17 - 3.5.7%.13%.29
.19.29 29? {313} .29 31
2Y7.3.7.13 2.3.5.11.17.23 — 22341317 225.7.11.17 5%.11.13%17.29 32.5%.7.29.31
.19.29 (211) (157) 31 (83)
3b 2'5.7.19.29 5.17.19.292.31 — 23345711 — 2232517223 —23.5,23.29.31 3¥7211.17.23
31 31 29
2Y7.7.19.29 - 2355211231 22.5.11.13%.23 22,7.23.31(73) 23.25(83) 5.7.11.17.23.29
31
3¢ 2°.3.13.29 0 —5%11.23 2.7 32.7.29 0
23.3.13.29 -2.3%5.7.23 — 223254711 22.5(239) 5.7.13%.29.31 —3211.17.29.31
13
19 1 293 3531 - 2.3.7.31 —11.29 2.17.29
2a 2%.3.1341° 2.52.7.11.23.29 —2%25.17.29.37 227.11.17.37 3.55.132.17.31 - §.7.31{3011)
37 (347) (131) 37
2b 22.3.13.41° 2.5.17.19%.31 22.7.11.23.31 2%.5.23.29.31 35.7.11.13%.23 11.17.23%.29.37
47 (61) (59) 29
3a 2137211 3.5.11%.13%31 2.3.7°.31 — 113.13%29 —2.7417.29
13
21472.11.13 - 2.3.5.11.17.23 22.3.7.31(137) 22.3.5.11.29.31 547.13%.29 —37.17.29.37
31
b 2477 ) 11.29 0 3.5.31 0
2'8.3,72 2.17.192.23.29 —225.7.11.29 22.32.5%(107) —3.57.11a7 - 3%2.5.11.17.31
31 37
3¢ 221113 0 17.29 0 3.7.31
2'%3.11.13 2.345.7.11.23 —22.3217.29 - 225.7.11.17 3.132.17.31 - 1.313.37
.29
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TABLE V. (Continued.)

[0+) [4+) B+) [12+) {16 +) [20+) 24 +)
I I Denominator 2+ {6+) [10+) {14 +) (18 +) 22+4) [26 +)
20 la 2'53.13.23 2.34.7.23.31 —2.325.11.17 22.11.17.19.31 36,17.19.29 2.11.19.29° —5.11.13.29.37
.19.31
1b 2'8.13.23 2.7.11.17.19.23 2.5.29211) 22,32.29(43) 7211331 2.17.31(47) 5.13.17.19.31
29 37
2 2 —2.5.23.29 22.13.17.29 223.5.11.17 7.31 ~19.31.37
3a 2183527 —2.527.11.13 — 2.5.13(887) 23.32.13.232 11.13.29.3167) —2.3%13%.17.29 325.17.19.29
.19 .17.19.23 312 31 3137
2163527 2.5.13.17.23 22325472192 —2235.11.13 —7.13.17.29.31 13.17.19.29.31
.19 292 17229 37
3b 2%°.5419.31 —2.557.11.19 —2.3%5%.17.29 2%.17.29.31 — 1L.17(1427 2.7%(1553.2459) 5.13.19.37(137
37 .23.29.31° 31(61) (123 997) 2543) .839)
29.5%.19.31 2.5.23.29.31 0 219357211 —7(67.181) 36.19.37(41)
37 (59) 17.31
3¢ 2°1.3.5%13 2.52.11.29.31 2.5.7.17.19.23 23.7.17.19.23 75.11.17.19.23 —2.7.19.23.37 ~5.7.13.23
31 37(313) 29.31.37 .29.31.37(47) 37 (43.67) (49 477)
21135213 —2.5.7.19.29.31 0 0 —192.23.37 7.23271)
31 37
3d 2%1.3.5%7 —2.5%7.17.19 2.57.11.31 — 221131 29{51 590 179) 2.11.17.29 ~5.1113.17%.19
.13.31.37 .23.31(1459) (54 601) (1288 037) (2 550967 .29.37(163)
213,547 —2.5.11.17.23 0 2143.5,13%.29 7.11.17.29 11°.17.19.29.37
13.31.37 31{67) 31 (2819)
21 la 2'%.19.23 —2.17.29.37.41 2%.5.13.37.41 —3.5%31.37.41 2°.32.17.31.41 13.17.19.31
b 2'3.19.23 2.34.5.13.29.31 21731 —3.13.17 25.5.13.37 —5.7%.19.37.41
2a 2'%.11.23.41 —2.7.17.19.31 22,52.7.13%.31 223752729 52.17.29(139) 5.7.13.17.19.29 :
37 37
2b 2'.3.11.23 2.32.5%.13.29 22.17.19°.29 ~22313.17.19°  327.13.19%31 —5.31.37(97)
4 31
3a 217527017 2.31(223) —255.72.13.17 — 3.5.17.29(167) 25.74.29.37 —3%.13.19.29.37
129.31 41
217527217 2.52.19.31(151) 22.13.17.31 —22.3.17.29 — 52.7.29(139) 5%,13.19.29.37
(193) (137)
3b 28527217 —2.3.13.19.29 25.3%.5.7%.112 5.13.17.19.31 25.3%.72.13.19 —3.31.37.41
23 (1087) 17.19 {191) 3137 (467)
21835272 — 2325211413 22.17.19.29 223.13.17.19 — 32527.11%13 — 52.31.37(967)
17.23 29 (2237) 31(181) .19.31
3¢ 283577 2.32.29.31,37 —25.5.72.13.17 3.5.17.37(977) 25.72.13%(431) 13.19.41(859)
.17.23 (113) 31.37
21857217 —23.5%112.19 22.3%.13.17.29 — 22.17.37{1549) — 3.527.19%312 3.5.13.19(139)
23 .29.31.37 31.37 37
22 la 243511 2.5.11.19.23.31 2.7.13.31° —23.3.5%13.17 3.7.29(53) 2.35.7.19.29.37 ~3.13.19.29.37
17 29.31 41
1b 235211 — 23571113 2.3.19%.23.29 2%.52.7.17.19 13%.19.23.31.37 2.13.23.31(317) 7.23.31.41(83)
17 29.37 37 23.37
2a 27%°32523] 2.3.5.7.13.29 2.17.19.29.31 7.13.17.19.37 13.19.37.43 7.43 — 325411312
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TABLE V. (Continued.)

[16+)

{sufey ' pue sjuo) 'y

[0+) [4+) 8+) [12+) [20+) 24 +)
1 I Denominator 2+) 6+) [10+) [14+) (18+) [22+) (26 +)
.31.37.43 .37.43 43 41
2b 211325231 2.3.5.17.19.31 —227.11213.31 24.29(103) 7.17.232.29 ~13.17.192937 0
3a 2193357 2.3.5.7.11.13 2.3.19.29.41 22.7.17.19.41 13.19.31.41 —2.5%7%.13.29% - 527.17%.31.37
.31.43 .23.29.312.41 (1907) (149) 317) .31.37.41 (61)
23257 2.3.5.13.29.41 2.7.17.19.29.41 —5413.17.19.31 —17.13.19.31.41 —~31.37.41 347°.11.31.37
3143 (67.83) (383) 41 (2719) (10 789) 43
3b 24357 2.5.7.23.29.312 —2.11.13.19.29 2%.3.7.11.13.17 —3.11.19.31.37 2.33. 547211 3.5%.7.11.13.31
3t 37 37 .19.37 3t 41
2195,7°31 2.5.11.29.37 23.7.11.13.17 3.5%11.17.19 PLILITALY 3.11.13.31(569) 3°.7%.13.31.41
(113) .19.29.37 3137 3137 A3
3¢ 2932723 2.3.7.11.17.19 —23.5%13.17 —225.7.13.19% 5.17.29.31 —2.5.72.17.19 5.7.13.17.19
.31.43 232312 (1949) .29(337) (11 617) .232.29.31.37 .29.31.37.41
211.30.9°.23 —23.17.19 225.7.112.13 24.5.29.31 —5.7.17.29.31 5.13%17.19.29 0
31.43 (2447) {139) (2237) (79) 3137
3d 2'93.7.23 ] 2.3.29(47) — 212717 —13.31(127) 0 7.19.31.37.41
31
2432723 —3.5.13.19.29 71121729 2.13.17.31 2.7.13.31 —2%.19.31.37 0
31
23 1 243 —23.7.29.31 25.5.17.19 3.5.11.13.19 237 —37.4143
2a 2317223 2.3%7.19.29.31 —257°.13.31 —35.1L13.17 5.7.172.41{293) 13.19(103.151) —7.11.13%.19.43
43 31.41 37.41 37.41
2b 219.3.172.23 2.32.5%.11.13 2.11.19(53.199) 3%.7%.17.19.31 711.13.172.19 5%.7.11%.31.37 5.31.37.4143
43 .29(131) 31.37 41 (101)
3a 2163757 — 235477 —25.5.17.41(97 350721113 —2%.19°.37.41 172.19.37.43(59
.13.17.23.31 .19.29.31.41 ) A41(181) (113.163) .307)
237827 —2.3%5.13.19 2.32.19%.31.41° —3.7.11%.1741 13.172.37.41° 32.5.7°.19.37 5%.11.19.37.43
.13.17.23.31 .29.31.41(113 {83.103) 43%(15 269) (17 359) (330 689) (195 809)
.167)
3b 2¥.37.5.7 — 23554717 255.17.19.37 —352.7411.13 2°.29%.43°(347) 112.172.41
11.13.17.23 .29.31.37.43 A43°(67) .19.37%.43 (33 179)
2437507 2.34.5.13.19 —2.3219.29 —3.7.11%17.19 —13.172.19.43 325.7.41.43 5%.11.31%.41
.11.13.17.23 .29.31.37.43 .312.37.43(59) .37.43(5743) {506 213) {492 281) (151.173)
(241) _
3¢ 232511 2.31.5%.7.19 25.17.29(3467) 3.11.13.29 —2%.5.19.29.37 5.112.19.29.37
.13.23.31 31 (1259) {107) 4143
2233511 2.345%13.19 2325722931 —35712.17 5.7%.13.29.37 38.7.19.29.37 —11.19.29.37.41
.13.23.3t .31(101) (521) .29(47) o7 At A3(11)
3d 2231587 0 —5.11.17.19.29° 2°3.5.7%.13.19 11(3037) 27.11.172.41.43
17.23.31 ’ 37 37
2434 527 2.345.11%.13 — 2321113419 —3.7.17.19.37 112.13.17%.19 - 35.7.11.41 5.41.43(181
.17.23.31 .29.31.37(97) .31.37(97) {101 599) {313) {149) .509)
24 1a 2°.34743 2.3%11.13.23* —22.35.5231.37 52.17.19.29.37 2%.5411.13.19 2.5%.29(251 941) 225.11.29.41 — 52.11.23.29.41
A7 .31.37(89) A43%(59) (149) .29.37(349) .43(8629) 43.47
b 222355211 232521723 —B.3.11.13.17 11.13.19(523 -~ 22.17.19.29* 2.11.13.17.37 —2%5.13.17.31 52.7%.13.17.23
4347 .29.31(26 099) .29.31.412.43° .15761) (570 539) (2421 407) .37.41.43 371°.41.43.47
fc 22.355%7 2.32.52.13.19 22.3%.11.19.23 11.17.23.31.41 22.13.23.31.41° —2.11.19.23.31 22,5.19.23.31 §2.19.31.37.43
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TABLE V. (Continued.)

o+) [4+) 8+) {12+) [16+) [20+) [24+)
1 I Denominator [2+4) 6+) [10+) [14+) [18+) 22 +) [26 + )
11.43.47 .29.41(53 29.41.43? (210 193) 9511) .37.41(101 .37.43(457) 47(59 341
.2939) (457) .269)
2a 2'8.5.2343 —2.11.29.31(83) 2.3%.19.31(97) 3.5.7211.19 —~ 13.37(71) 37.41(97) —52.11.23.37.41
{53) 43
2b 2'63.5.23 2.32.19.29.37 —2.3.11.29237 3.5.112.31.37 - 11.13%.19.31 34.11.19°.31 52.19.23.31.43
43 41 41 41 41 '
3a 2237523 —2.325%11.13° —2%3.13%.19.29 52.72.17.412 22.3411.13.312 —2.19.37(191 225701119 32.52.11.19.23
31 .19.23.29.31 .31(223) (489 799) (139 939) .26723) 37.41.43 .37.41.43.47
(883) (1069) (359)
224.37,55.23 ~2.345%11.13% 235217231 315711232 13.19.37(79 —3%.19.232.37 72.11.13%.19.23
31 .19.29.31.412 {230 059) 312 4133) A41(2531) .37.41.43(311)
3b 224310557 —2.32.5%.23.31 23.3.11.13.31 —5211.13.17.19 22.34.72.112.19 2.72.11.13.29 22.5.13.192.29 32,52,13.23.29
23237 .37.43 .37.43 29.37.43 .29.37.43 37243 41(59.73 A4L470251
(1042091) (1681 103) (79 811) (7043) (141 307) 257) A63)
21331065 7 234527213 22.3.52.74.11 0 11.29.43.477 34.11.13.23° 24.13.23.29.31%
23237 3137243 .13.19.29.31 {91 369) 29°.41.43 4111
.37.43 {53)
3c 2234587 — 2325111213 23.3.11°.29.31 52.11.17.19 —-223472.13.19 ~2.72.11.37 22.5.37.41% 43 32.52.23.37°.41
31 .23.29.31(127) (2383) (35051 J313(1531) (265 987) (539 4347
24.345%7 2345272112 —2357211 35.55.72.19.232 11.13.37 —38,11.37.41 — 11%177.23.37
31 .29.31(53) .19.31(2617) 312 {155 891) (1823) 4143
3d 22431058 2.32.5211.13 23.3.29.31.37 52.17.19.37.41° 22,3%.11.13.19 211237412 225.11.43 —3%,5%,11.23.43
232.31.37 .23.29.31.37 41(8 691 971) (53.3329) 312.37.41 (79.593) (84 615 281) 477052 987)
.41{12791) (9151)
25,310,56 — 234521113 — 2235570112 0 13.41{626 113 34.72.23%61 24.11%.23.43
233137 .29.31.37°.41 .19.292.31.37 *.193) {5701)
41
25 la 2835 2.345%7.31.37 3.11.172.19.37 11.19(179) 2°.41(67) —5%11.41.43 —11.23.41.43.47
b 223335 0 —3,37.41.43 2541.43 2%.11,19.43 — 25519 19.23.47
2a 2203412 —2.37.11.23.31 2.3.29.43(79) 5.7.113.19.29 33.72.11.29.37 7.29.37°.41 3.11.23.29.37
43 43 43 4147
2b 23412 —2.7.112.29.31 2.7.11.23.37 —3.5.19.23.37 7.23(659) 3.11.23.312.41 —1.13%.41.43.47
37 AT? {59) 43
3a 2'%3.7.61 —2.7.1L17%19 3.7461.677) 52.37(5197) 23.11.19.37.41 —325,19.312.37 72.19.23.37.41
677 31372 7 4143 4347
220.3.7.61 —2.3.112172.19 — 233118017 5.7(11789) 3.52.7%19.37 - 7°.11.19.37.41 —3%.19.23.37.41
677 .23.29.31 .19.232 (331) 43 347
3b 21232527 —2.7.11.13223 0 19.23°.41.43.47 27311.172.23 — 5.23.47(28211) — 21032 5472
.17.29.61 .31.37.41.43 43.47 A72.292
677 47
21932527 2.3°.52.29.31 2.3'1.52.11.23 5%.7.19.23.37 3,72.23.41.43 ~1.11.23.47 — 3(107.293.751)
.17.29.61 .37.41.43.47 .37.41.43.47 41.43.47(53) 47(2837) (14767)
677
3c 2152717 2.7.11.31 0 32,19.37(139) — 21 1117237 —5.37.41.43 0
AT Al {103)
2123527 2.52.23.29.31 — 2521161 3.527.19 — 78.37(101) 37.7.11.37.41 23.37.41.43.47
1747 (4877) .3067) (1381) 43(53) (59)
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TABLE V. (Continued.)

[o+) [4+) B+ 2+) 16 +) 20+) {24 +)
1 I Denominator [2+) [6+) [10+) [14 +) [18+) [22+) [26 +)
3d 2'.32.5.29 —2.7.37.41(89) 0 7.11.17%.19.31 ~ 2113223231 5.11.31.43(151) 0
47 41
27232529 —2.33.5211°.23 2.37.531.37 5.7.11.19.31.37 —3.11%.31.41 7%.31.43(1201) —3.11.23.31.43
AT 29.37.41 41 A41(79) (977) 47(229)
26 1a 22311013 —2.3%7.13.23 2517231 —547.17.19 22.3.5%.37 2.5.11.132.37 22.5.7.23.37 3.7.23.37.41.43
19 26°31 {227) {1069) A41(89) 41743 47
b 2%.3.11.13? —2.3%5.13.17 23.3%.7.23.37 3%.5.17.19.23 2%.5.7.23.31.41 2.3.7.11.132.23 —223.31.43 5.7.31.43.47
.19 .29.37.41 41 31.37.41 {53) 31 (109)
2a 223531 22.31029.31° 3%.5.7.11.172 5.112.19.23 2.57.112.23 2.3423.37.41 —7.19%.37.41.43 — 527.13.17.37
19223 (251) 31237 43 47 414347
2b 273831 ] — 3%.11.37.41.43 7.19.37.41.43 2%.312.41.43.47 22.3.5%.7.47 — 5.112.23(257) 5.74.13.17.23
47 47

TABLE VL I', representations up to / = 26, ternary axis. When a coefficient extends over more than one line, the continuation line starts with a dot symbol.

jgufey 'r pue sjuo) 'y

(41474

[o+) [3+) [6+) P+ [12+)

i Denominator [15+) [18 +) [21 +} 24 +)

0 1 1

4 3 -7 225

6 3 -~ 253 —2.5.7 ~ 711

8 38 3.11 - 2357 25.13

9 3¢ - 2.13.17 — 717 2237

10 k4 27.5.13 —233.11 —-3.113 —2.11.17.19

124 3158 11.17.23.{149) 227.13.17.23.31) 2°.13.23.0131) 22.7%.13.19.23 2.7.11.13.19.(61)

126 30.5% 2.7.13.19 2%.11.19.(139) —2%7.11.13%17.19 22.11.17.(337) 72.17.23

13 3 —2%5.17.19 52132 2.32.52.11 —2411.23

14 3t —2657.17 2.13.441) 11.13.19 —72%.13.19.23 —25.5.19.23

12 7.3.19.23 2°3.7.11. 2.34.19% 5.72.13

15 3 - 2.52.7.13.29 2’3 23

162 3135219 —~3213.172.19.23 ~24357.11%13.23 263.23.(127) 24.32.5.(157) 23.13.(1381)
24.5.13.29.31

16b 3155219 22.32.72.112.19.31 —2%3.5.7.17.31 2°.3.13.17.31.(37) —2.3%.5.13.17%.23.31 17.23.31.(307)

—2.5.17.23.29.(59)
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TABLE VL. (Continued.)

0o+) [3+) [6+) [P+) [12+)
1 Denominator [s5+) [18+) 21+) 24 +)
17 3u 2.3.5.23.29 ~3.5.11.13.29 223429 2% (41
—2103]
184 3167313 27.3.17.19.29.{73) —22,32,5,7.29.(521) 32.72.11.13.23.29.37 2.5.23°.29.(107) —2%3.132.23.(89)
~22.3.5%.11.23.31 227.11.17.23.31.(73)
143)
186 3177313 —2°3.11.23.(101) —2432.5%.7.11.17.19 —223%72,13.17.19 — 22.5%11.17.19.(73) —2'9311,13%17.19
23 {19) 29
~2.3.5.17.19.29.31 —1.19.29%.31
(113)
19 315 ~2°3.5.23.31 —243.7.31 22.3.5%.11.31 11.29.(89)
245.7.17.29 ~283.17.29.37
202 313,23 3.7°.23.31.{229) —22.3%5.11.19.31 —2%3211.13.17.19.31 —2%5%11.17.19.29.31 2.3.74.132.17.19.29
{61)
2%.3.5.11.19.29.(109) 25,11.29.37.(293)
206 3%%,13.23 2.3.7.11.17.19.23.29 23.325.17.29 —26.32.13.29.(43) 2*.5%(1619) —3.7%11.13431
223.5.72.17.29%31 24.17.19.31.37
2la 317.19.23 —~27.3.5%.17.29.37.41 —24.13.29.37.41.(47) —25.32.37.41.(139) —245%72.31.37.41
—2.17.31.37%.41 32.5.13.17.19.31.41 227.13.17.19.31.(61)
216 318,19.23 —23.3.5.7%.112.13.29 5.17.29.31.(557) —2.325.13.17.31 —287213.17
31 311
25.5.13.(4943) ~ 24.3%.19.37.(499) 26.5%.7.19.37.41
22a 3652 11.17 2%.3.5.11.19.23%.31 2.3.7.19.31.(487) 13.17.31.(2003) — 23 7.112.13.17.192.29 — 26.7.29.(2069)
— 23.29.37.(1019) 2.7.13.19.29%.37 —22.52.13.19.29.37.41
43
22b 321.52.11.17 293.5.7.11.13.29.37 22.3.13.23.29.37 —2.7.17.19.23.29.37 —2%11217.19.23.31 2%.13.19.23.31.37
A12 {53) 251) 37 {7y
—227.13.19.23.31 - 23.31.43%(59.67) —2.5%7.23.31.41.43
{739) {47
23 3 —2193,5,7,29.31 2819231 2.32.17.19.471) —5.11.13.19.412
—2.13.37.(283) —25.325.7.37.41 27.11.37.41.43
24q 29.3%.7.43.47 —2.32,7211.13.23.31 24,5%,31.37.(2439257) — 28.52,19.29.31.37 —2.3.5211.17.19.29 — 52,11.13.19.29°.37
.37°.(883) (8867) .37%,(1951) AT72,(89)
2.5.23%.29.(811.1409) 27.3.52.232.29.37%.41 2°.5%11.13%.29.41.43 — 52.11.23.29.41.43.47
(563} {1193) {6311)
24b 210378 52 11 2.32.5274.17.23.29 24.52.11.13.17.29.31 26.11.13.17.19.31 2.3.5%13.19 17.19.47(109)
43.47 31.(3163) (1574 791) .(431.13 789) .(38221 921 .(505 511)
2.5°.11.13.17.37 2.3.11.13.17.37.41 2%.5413.17.37.41.43 7%.13.17.23.37.41.43
{503.773) {479.1669) {197.373) 47.(107.557)
24c 212328 52711 2.32.5%74.13.19.29 -—2452.11.172.19.23 25.11.23.41.(2 180 183) —2.3.5417.23.31.41 13.23.31.41.472.(59)
4347 A41.(479) .29.41.(42 391) {2733373) {86 719)

—2.5%11.132.19.23.31

27.3.11.19%.23.31.37

- 23.5%19.23.31.37.43

— 19.31.37.43.47.(71)
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TABLE V1. (Continued.)

[0+) B+) (6+) [9+)> {12+)
! Denominator [15+) [18 +) [21 +) [24 +)
.37.41.(521) .(109.1093) (223.593) .(60223)
25a 3?15 —22.77.11.29.31.37 - 2.312.37.(311) 25.3%.11.19.37.477 - 25.11%.19.(73)
22.5.(167) 3°.7.41.43.(239) — 2.11.23.41.43.(83) —25.11.23.41.43.47
25h 3?5 - 2.7.19.29.31.37.41 —11.13%.19.37.41.43 —2433.3741.43 20.41.43.(347)
43
23.5.11.19.232.41.43 2.3%.7.11.13219 22.19%.23.312 —25.19.23.47.097)
26a P 1113219 —28327.13.19%.23.29 —245423.31.417 5.7.11.(523.3011) 2.3.5.17.19.{157561) —27.5%,37.(14867)
31477 {151)
—2%.5.7.37.41(73) —2.3.5%37.41.43 - 2%.5.7.132.23%.37.41 —27.7.23.37.41.43.47
(571) {10 103) 4347 {173}
26b 311113219 2°.3%.5.13.19%.29.37 —2%.5.7%.37.41.(359) 2.11.23.31.37.41 —223.7.17.19.23.31 —2%5.7.23.31.41
41 .(1613) .37.41.(53} .(233)
2.23.31.(238 439} 3.5.7°.23.31.43.(163) —2%.132.31.43.47 25.5.72.31.43.47
{1531) .(157)
TABLE VII. I', representations up to / = 26, ternary axis.
[0-) [3-) [6-) O-) [12-)
1 Denominator [15—) [18—>» [21 ) [24 )
3 3 5 22
6 3 2.11 -5
7 38 -3.7.13 2213 2511
9 3® —-2%5.11 —-23.7 - 3.5%13 —2313.17
10 3¢ 2219 - 5219 23.17
11 3 11.13.17 —2235.7.17 273 2%.19
12 3° -22.17 - 27 —223219 11.19.23
13 3 27.7.13.19 225.11.19 - 11177 —2.17453) —245217.23
14 3° —2.19.23 5%.11.23 —223217° 2°.5.13
15a 3°41.43 —2.5.11.13.17.23 25.3.7°.11.23 —2%.3%5%19.23 —2.7%.11.19 5.7.11.13%.19
—2.11.13.19.29
156 314143 32,5.7.17°.19.29 24.3.13.19.29.(79) 210,3,52,7.11.13.29 22,3%.13.23.29.(53) 2.5.23.29.(191)
2%.7%.23.(257)
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TABLE VIL (Continued.)

[o-) 3-) {6-) [9-) [2-)
! Denominator [15—) [18 —) [21 =) [24 ~)
16 3n 273.5%7 —253.5.13 —2.3%.13.23 —5.112.23
2.23.29.31
17 315 ~263217.19.23 2.3.23(113) 3.11.13.(47) —22.3%5.(41) —2°5.23%29
— 2952931
184 2.34.61 -223.7.13.23.31 -3.5%11.31° 2.3.13.31.{241) —245.13.172.29.31
. 2.11.13.29(71) 357.11.13.17.29
185 2.35.61 22.3.11.23.29.(67) 3.5.7.13.29.(97) 2.3.7%.11.29° 245.7.11.13%
2.7.112.172.31 — 3.5.17.31.(229)
194 31813413 - 3.5.11.19.23.29.37 —2232527.17.23.29 —27.32.5.17.29.37 27.5.7.11.17.29.37 25.3.5.7%.11.17.31.37
(1031) 37.467) (433) (307) 43)
—~2°331.37.(761) 21.52.7.31(1217)
195 31813413 — 25.3.52.7.17.19.31 - 27.32.5.11.31.(5507) 24.32.7.11.23.31 —22.174.23.31.(239) —3.23.29.(12613)
(353) (3191) :
24.3.5.7°.11.17.23.29 29.11.17.23.29.37
{127) (149)
20 3 2'.3.5.29 —263.13.17.29 —2°3.7217 11.132.17.31
22.5.313 —243.19.31.37
2la 3'7.11.23.41 2'1.3,5.11.17.19.23 - 27.3.72.17.31.(89) - 2%.52.7.13.31.(89) 2°.52.77.112.29.31 —24.5.7.29.(127)
3
—2.5477.17.29.317 —5.7.13.17.19.29.37 —22.5%13.17.19.29.37
(53) 41
216 320,11.23.41 ~27.3.5.7.11.13.23.29 —23.3.5%13.19.29 - 52.17.19.29.(6529) —2.7%11213.17.19 —2%5.13.17.19.31
(47) (463) (463) 251
25.13.19:31.(67) 2‘.55.31.37.(101) — 28.75.13%.31.37.41
22a 31,5231 —223.7.13.29.31.37 2.5%.17.19.29.31.37 —2432.7.17%.19.37.43 25.52.7.13.19.37.43
43 43
— 22.112.13,.19.43 32.52.7.17%.43.(53) —2.41.(3361)
(241)
22b 39,5231 2.3.17.19.31.(2293) 52.7.13.31.(691) —23.3%13.29.41* — 26.5%.17.29.(457)
- —23.7.17°.29.37 - 2732‘52.13.17‘19.29 22.7.13.17.19.29,37
.37 41.43
23a 316,172.23.43 3.5%.7.11.19.23,29.31 —23.3%.13.19.29.31.37 —2%.345.7.13.31.37 —245.7.13.17.37.41 22.327.11.37.41
3741 4 41 {103) (337)
24.325.7°.17%.19.41 28,13.19.(397) 210.3657.11.13.19
; 43
23b 301722343 2%.3.5.13.23.29 26.3.5.7.11.29.11997) —212,52.11.19.(3209) 2.11%.17.19.31.41% —5.13.19.31.(24391)
(9601) (59)
—2.11.13.17%.31.37 25.5.7°.11.31.37.41 27.31.37.41.43.(239)
(463) (127)
24a 23852343 — 219522931 (131) 2%.19.31.(1861) —2.3%.11.17.19.2011) — 11.13°.19.(1013)

2.5.74.37.(607)

27.3°.172.192.37.41

— 2%.11.37.41.43.(349)

11%.23.37.41.43.47
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TABLE VIL. (Continued.)

[o-) B-) 6-) v-) n2-)
1 Denominator 15 —) {18 ) f21 —) [24—>
24b 232152343 —2'9,5%11.19.29.37 ~28.11.37.41.(2999) —2.32.132.17.31.37.41 — 13.31.37.41.(3529)
Al 47
—2.5.11.19.31.41 —2',3%.11.19.31.(89) 22.19.31.43,(3083) 13%,19.23.31.43.47
(151) (71)
25¢ 38412 - 21032,52,11,13.23 26.7.11.31.43.(2539) — 25.29.43.(24631) ~2%.3,11.19.29.43 2%.11.19.29.37.43
3143 211
22.5.112.29.37.43 — 3.5%7.172.29.37.41 ~2.5%11%,23.29%.37 25.72.11.23.29.37.41
{167) AT 41 47
256 3%.412 2%.32.52.7.13.29.31 2.23.29.31.37.(79) 7.11.132.172.23.37 —2%3.7.19°.23.37 — 28.7.19.23.(59.163)
.37.(59) {89) (113) 161)
—27.5%.7.11.23.{147) —~25.3.11.23.41.43 — 25.7.41.43.(2801) —2197,41.43.47.(443)
(659)
262 331 — 24112.17231.(83) ~ 5.7.11.23.(607) 2.3%,5.17.19.23.(659) —27.23.312.37.(137)
22,5.7.23.37.41.(701) —2.3%.23.37.41.43 22.5.7.192.37.41.43 27.52,7.37.41.43.47
{193) 47
266 3%*31 —2%5,7.23.31.37.41 2.5211.172.37.41.43 22.33.7.17.19.37.41 245.7.312.41.43.47
4347 47 4347
— 2.19%.43.47.(1259) — 3%.5.7.47.(3259) —~22.172.23.412(61) 20.5.72.23.(2399)
TABLE VIIL | T, 1) representations up to / = 25, ternary axis.
[ [-2) [4) [-5) (7
[—8 [10) [—11) [13) [-14)
[16) [—17) (19 [—20) [22)
) Denominator [—23) [25)
2 3 2 1
4 » 22 -2 -7
5 3 23.7 3 2 —225
6 3 ~223 —~35 2 —21
7 36 2.3.11 ~-2511 1 2 —27.13
8a 2.3 —2.11.13 0 —7.13 2.7 —2.3%5
— 53
8b 2.3 —~2.5.7 1 5.11° 22.5.11.13 — 271113
7.1L13
9 g —2211.13 ~ 5213 257 -25 2
217
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TABLE VIIL. {Continued.}

{1 [-2) {4) [-% n
[-8) [10) {—11) 13 [—14)
[16) [-17) [19) [—20) [22)
1 Denominator [—23) - [25)
10a 3 22.5.13.17 2.3.5.13.17 —-27.35.17 223.11%.17 2.3.5.(41)
2'5.7* — 11219
106 3n —2.(61) 3.52(31) —~243.13 — 22357213 223.13.17
2.13.17 2.5.13.17.19
1la 22.3° —227.13 257 3.(89) 2.3.7.13% 225.7.17
—~5.7.17.19 —251719 —21117.19
115 22310 —2°5.13.17.19 24.17.19 ~3.5.7.17.19 2.3.5.17.19 2211219
—(139) —2557 2.5.7%.11
124 3 23.11.17.(31) 25.7°.17 —3.7.17.29) —243.7.31) - 221923
—22.19.(73) ~ 2471119 247.11.19.23
12b ki 26.5%.7.19 28.5%.11.19 223701119 2.3.541117.19 ~ 271117
7.11.17.23* 27.5%17 2.17.23.(29)
13a 31217 —225.17.(29) —2.17.{263) 24.5.11.(43) — 24511132 —2.7.11.19
—27.11.19 —5.19.23.(31) 21951923 —2%5.13.19.23
136 347 2.11.17.19.23 —5.11.17.19.23 ~27.19.23 2°.19°.23 225.7.23
— 2557023 2.11.(41) —-2°.11 — 23541113
14a 273108 —22.345.11.13.17 $7211.17 —2°35.13% —23.7419 —245.7.19.029)
—2132511.19 22.3211.19.23 2.11.19.23 —2%.3%11.13.19.23 —327.11.13.19.23
14b 27.31.52 22.32,5.72.13.17.19 32.5%.17.19.23* 2°.3.5%.72.11.19 —2.3.112.97) 24.325.7.11.(43)
— 21,32, 5%29) 22.32.23.(953) —2.32.23.(349) —2%13%23 73.13.23.(83)
14¢ 2431052 23.32.5.7.19.23 —52.7.13.19.23 0 —2.3.7.11.13.17.23 —245.11.13.17.23
0 2232.7%.13.17 —2.7.13.17.(43) 22.7.17.47) —17.(101)
15a 3211 2.3%13.17.19.23 0 —3.7.23 —25.35.7.11.23 —-23423
—22.3241) — 25325827 25.345.7.13 —~2".513 —27.5.13.29
15 3B 24.325.7.17.19 2432511219 223507213 22.3.5%11.13 —2°325.77.13
32.5.7.13.23 —25325.13.23 - 22.322329% 2'97.23 —2477.23.29
16a 26.3%.11 28.3%.5.72.(1327) —243.72.172(37) — 25352 7.112.13.19 22.3.5.13.19.(7349) —2%3.72.13.19.23.312
— 3%.13.19.23.(2251) 20.32.52.7.19.23.(73) 22.5%.7.19.23.457) 245.132.19.23%.29 24.52.77.19.23.29.31%
— 5%.112.17%.19.23.29
.31
1656 23.3%.11 — 2%3%.13.19.23.{53) 24.3.5.13.19.23.(43) 22.3.7.112.23.{157) 22.3.23.[3169) —24.3.5(37.71)
32.5.(44 971) 2°.32.5.7.13.17%.29* 22.5.7.13.(5503) —24.5%.13.29.(431) 24.5.13.29.(367)
5%.11%.13.29.31
16¢ 237 —25325.7.19.23.29 —243,54.7.19.23.29 2%.3.5.13.23.29 22.3.5.7.132.23.29 26.3.5%.7.13.29
— 3%527.13.17%.29 —25.3%.29.(139) 22.29.(2213) — 245.7.172.(19) — 24.7.(3209)
—7.232.31,(83)
17a 3% 527.11.19 —2°.3.5.19.23.29.(41) 3.5%11%.132.23.29 2%.3.5.194.23.29 —2.3.5.72.11%.13.23.29 —22,3,5.13.29.(101)

— 263.13.29.(631)
— 25.7%.11.31:{139)

72.29.(1279)
—24527°.11.17.31

2.29.(19 813)

2.(47.2129)

31(37.439)
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TABLE VIIL (Continued.)

{1 [—2) 0 [—5) [
[—8) (10) [—11) [13) [—14)
[16) [—1D) (19) [—20) [22)
! Denominator [—23) [25) .
176 22315527 —23.3.5.11.13.19.23 —3.5%11.13.172.23.31 —2%3.5.11.13.23.31 —2.3.5.7%.23.31.(53) —243.5.11.31.(509)
31
—212311.31 — 227%.11.13.31(53) —2.11.13.31.(157) 22.11.13.2931.(71) 11.13.29.(1447)
2872.13.172.29 24.5%.74.13.17.29
17¢ 22.32.11.19 - 22.3.17%.19.(59) 3.112(971) —2°.37.19% S 23811003 —2%3.13.23.(113)
—2'°3,5%13.23 —22.5.23.(503) 2.5%.23.(167) — 23252329 — 32.5.132.23.29.31
-~ 2.5.11.23.29.31 24.5.11.17.23.29.31
18a 2.3%.7.13.19 —243.11.23.(4951) —22.3.5.117.13217.23 —243.7.17.23.(1297) 25.3.112.17.(569) 2.3.5%13.17.(59.71)
.29 27.3.5%.11.17.(509) —5.7.11%.17.47) 24.5%.7.11.17.19%.29 22.52.11%.17.232.29.31 5.11.17.29.31.(751)
—27,5.29°.31 —2.557.29°.31
185 2.32,7.19.29 ~ 2123351731 27.3.54.132.31 24.3.5%.7.11%.31 2'.3.5.11.23.31 —2.3.5%.11.13.23.31
—27.32.5.23.31 — 34.7.23.31.(67) —24.7.19%.23.29.31 —22.5.23.29.(41) 23.29.(37).(43}
2.11%.17.23.29 2.34.5.7.11.17.23.29
18¢ 3%6,13.29 —2.3.5%7.17.23.{109) —3.57.132.172.23 —21335211.23 2°.3.52,7.11.(43) 22.3.7.11.13.19%
. —253.73.097) 2.5.19%.(1069) —23.5.112.29.(61) 23.7.29.31.(41) 2.5.7.29.31°
28.5.7.11.17.29.31 —2%.11.17.29.31.(61)
19¢ 3B 720L13 23.34.5.7.11.17.23.31 25.3.5.11.172.23.31 3.5.3L{151) 22.3.52.31.47) —2%.3,7.31.(2459)
2.3.7.31.(3391) 243.5.11.29.31.(41) —22.11.29.31.(191) 22.7.11%.29.(131) —28.52.7.29.372
—2.175.29 —2'°.3.17.29.(107) 22.3.5%.72.17.19.29.37
196 23.3'.72 —283.7.17.23.29 —25.32.13%17.23.29 27.32.11.29.(47) 2.32.5.11.29.(457) —2133257.11.29
—5.7.11.29.(97) 27.5%(191) 2.3.5.(53.97) 2.3.5%.7.31.47) —27.3.5.7.11.31
—3.5%.11.17.29%.31 —-2°5.11.17.31 —2.572.11.17.19.31
.37
19¢ 2338 11.13 —28.3.5.11.23.29.(53) —25.32.5%.7.11.23.29 2°.32.5.7.17.232.29 —2.3%.5%7.17.29 2°.32.17°.29
109)
17.29.(61.251) —27.5.7.11,17.(41) —2.3.7.11.17.(1223) —2.3.11%.17.31.(53) —27.3.17.19 31
—3.7.31(9791) 2°.7°.31(79) 2.7.19.31.37
20a 3'5,527.19 22.3%.5.11.13.17.19 —2°.3.5.13.17.23.29% —2.32.5%.13.(103) 25.32.5.13.(281) 24.7.(359)
23
2%.32.13.{113) —28325.11.13.172.29 —25.11.13.29.31.(47) 26.3.112.13.29.31 —243.7.13.17.29.31
—25.5413.17.29.31 22.32.13.17.29.31.37 26.32.17.19.29.31.37 —5°.17.19.29.31.37
206 212,318 54 19 243.5.11.19.23.29.31 2'2.3,5.72.132.23.29 22.32.5.17.23%.29.31 2.3%.5.17.29.31.(101) 25.7.13.17.29.31
3137 (167.179) 31,307 (26 821) (2393) (437 861)
— 17.29.31.(4 228 141) 21.5.11.17.31.(61) — 2.11.17.(50 545 553) 2.3.17.(1637.687 37) —2'33,7.(2 199 151)
(1283)
—5%(83.234 932 9) 2°.72.37.43.197.257) —2.13.19.37.(382 727) 22.5.13%.19.37
{19 577)
20¢ 2143195213 243.5%.7.11.29.31.37 —212353.7.112.19.29 —223%5.7.17.19.23 2.32.5.7.17.19.23.29 25.13.17%.19.23.29.31
31 {7127) 31.37 .29.313.37 .31.37.(367) .37
7.13%.17.19.23.29.31 28.57.11.17.19.23 2.7.11.17.19.23.37 —2.3.7°.13%17.19.23 213.3.19.23.37.(47)
.37.(293) .31.37.(41) {5077) 3745713 (199}

5%.7.19.23.37.(11 279)

2.7°.19.23.(223)

2.75.13.23.(67.463)

2°.5.7.13.23.311)
(547)
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TABLE VIIL. (Continued.)

[ [-2) (4) {-5) )]
[-8 [10) [—11) [13) [—14)
[16) [—17) [19) [—20) [22)
I Denominator [—23) [25)
20d 24.3%547.13 —2%3.5.17.19.23.31 2'2.3.5.11.17.23.31 —2%.32.5.11.31.(47) 2.32.5.11.31 —2%.7.11.13.31
3137 (814 399} {241.859) .(103.11 923) (17904 347) {1034 381)
— 11.13231.(607) 2'3.5,29.31.(226843) 2.29.{23197.27611) - 2.3.11.13%.29.(659) —~283.7.11.17.29
(21 929) .(1811) .(225 353)
- 5%11%.17.29 25.11.17.29.37.(137) - 2.11.13.17.19.29.37 ~235.11.13.17.19.29
.(275 201) (41 851) .(934 981) .37.(122 861)
21a 2.3'%.52.712.17 - 2%3.5.19.23.31.(73) ~2%3.5%.132.19.31 —2%.3*72.31.(137) - 2%.3%13.17.31.(101) —2.5.7.13.17.31.(487)
(53)
—27.5.13.17.19%.29.31 17.29.(43).(673) - 2211.17°.23%.29 24.35.5.7%.29.(89) 35.7.11217%.29
- 27.295.37 2.5.19.29.37.(1069) - 210.72,13.19.29.37 24.52.7%.13.19.29.37
.41
21 2239527217 ~223.5.13%.23.29 2.3.5%.13.29.{49 937) 27.3372.13.19%.29 22.32.17.19.29.(6113} —2.5.7.13%.17.19.29
23 .(1567) 377 .(61)
— 2%3.5.17.19.(5279) 13.17.19.292.31.(251) - 22.11.13%,17.19.29? —243.5.7%.13.19%.31 3711213317219
31 23231
—27.13.19.31.37 — 2.5.13.31.37.{2699) 219.74.31.37.(419) —24.5%.7%.31.37.41
(1301) (43}
2le 22.3'9.5.7%.17 —2%.3.5.19.23.29.31 2.3.5%.19.29.31.37 - 21.32.72.29.31.37 23.32.13.17.29.31.37 2.5.7.13.17.29.31.37
.23 .37.(359) .(61) (43) f211) (211)
2°.5.13.17.31.37.(89) 17.37.(115 589) 22.11.17.37.(2609) 24.3.5.72.192.37 3.7.132.172.232.37
{373} :
27.(763613) - 2.5%.19.(151.701) 2'°.7%.13.19.(853) 24.52.7%13.19.41
(541)
22a 322.57%.31.43 - 2%3.5.7.13.29.41 - 2.3.5°.13.29.41 29.3.19.29.41.(23 039) 22.19.29.41.(257.661) —26.7%.17.19.29%.41
.(18 311) .{3209) 432
—217.17.19.41° 22.1121.13.17.19.31.41 - 2.11.13.17.19.31.41 - 22.7.13.19.31.41 —7.133.19.31.41
(151) (1423) (67.109) (27073} .(7019)
2°.13.31.37.41.(6521) — 22.31.37.41.(1627) - 27.7%.112.31.37 — 25.5%.7.31,37.(89) —267°.11.31.37.43
.(2857) .(229) .47
225 2.38.5.7°.31 2%.3.5.7.113.29°.37 23.3.5%.11.29.37 - 2%3.112.13.19.29 —24,11.13.19°.29.37 — 22O
y {269) 37 37
- 214.7.11.13.17.19.37 11%.17.19.31.37.(67) - 2°.17.19.31.37 - 2.7.11.19.31.37 —2%7.11.19.31.37
.(1103) (757) (197)
26.11.23%.31.(683) ~2411.13.31,(10 273) 2.7%.11.133.292.31.41 27.5%.7.11.13.17°.31 73.13.31.41.43.(79)
41
22c 2.3*2.7.23.31 2%2.3.7.17.19°,(1487) —2°3.17.19.23? - 28.3.5.13.17.(79) 21°513.17(133 831) 2%.5.72.13.234.29.432
43 {10 141) (2347)
—~2%5.7.13.29 5.112.29%.31.(1217) 21.5.112.29.31 - 2.5.7.17.29.31 —225.7,17.29.31
(255 617) .(49 669) .(69 899) .(5233)
2'5,17.19.29.31.37 —245.13.17.19.29.31 2.5.7%.13.17.19.29.31 —275.7.13.17.19.29 —5$27P.11.13.17.19.29
(47 37.(1571) 37.41.(127) 313741 .31.37.41.43
224 3217.23.31 —223.5.7.13.19.29 —3.5.112.13.19%.232 - 25.3.29.(89.229) - 2.112.29.(35 221) 25.52.7.17.23%.(419)
.{1009) 29

2%.7.112.17.(463)
—2%.13.19.31.37.(47)

2.13.17.31.2371)
—2°.19.31.37.(2833)

22.52.11.13%.17.31
22.72.19.31.37.41
(79)

—227.13.31.41%(631)
~25.52.7.19.31%.37.41

2.7.13.31.(18 793)
2.7.11.13%19.31.37
41.43
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TABLE VIIL (Continued.)

1)) [—2) 4) [—5) n
[—8) [10) [—11) {13) [—14)
{16) [—17) {19) {—20) [22)
1 Denominator [—23) {25)
23a 25,353 7%.13 2%,32.5.11.13.19.29 —2%.325.72.13%.17° 22.7.19%.29.31.37%.41 22.29.31.41 23.3.5.132,17.31.41
17.23.31 .31.41.(996 109) .19.29.31.41.(1567) .(89 083) (431 877 583) (7248 113)
3.5.17.41.(673) 243.7.11.17.41.(53) -2%3.7.11.13.41 22.5.13.41.(907) 26.72.13.312.37.41
{2589 131) .(59.648 91) (72030 397) (1327 7189} .(665 029)
—3.19.3741 —243.5.7.19.37.41° 223.52.172.19°.37 2°.3.19.37.43.(317) 245.11.13419.37.43
{86 106 541) .(948 061) .(73.182 89) .(108 529) {296 753)
—245.11.19.23.37°.43
{167.1709)
23b 26.3%%.5%,7.11 22.325.11.13.29.31 25.32,5.72.13.172.23* —227.29.31.37.43 22.19.29.31.37.43 —2%3.5.132.17.19.31
13.17.23 .37.43.(178 859) .29.31.37.43.(53) {19 701 901} .(2593.2699) .37.43.(102 563)
3.5.17.19.37.43.211) 243.7.11.17.19°.37 —223.7.11.13.19.37 —225.13.19.37.43 26.72.13.19.232.43
{26 317) .43.(26 987) 43.(557.3109) .{83.179.829) {438 049)
—3.412.43.(202 540 087)  —2°.3.5.7.43.(71) — 223521721941 —22.3.41(15877) 245.11.13%41
{464 927) 43,247 781) .(203 641) (26 968 589)
24.5.11.23.41.(337)
{158 567)
23¢ 3%45.11.13.23 2.32.54.11.13.19.31 —25.3%.13.19.31.(83) — 5°.7.19.31.{10529) — 25531 (101111) 2.3.72.13%.17.29.31
31 (1979} (439} ; (5573}
—22.3.17°.29.{139) ~2835.7.11.17.29 —283.5.7.11.13.29 2'%.13.29.(3779) 219.5.13.29.312.37
.(647) .(59.109) {31013) .(349)
2%.3.5.19.29.37 24.3.7.19.29.37.(131) —2'°35.19.29.37.41 2°.3.5%.19.29.37.41 2'2,52.11.13%19.29
{13 679) {367 (1033) 43.(179) .37.41.43
—24.11.19.23.29.37.41
43.097)
23d 2635527217 2%.32.5.13.29.31.37 25.32.5.7%.11.13.17* 22.7.11.29.31.37.(89) —2°.11.19.232.29.31 2%3.5.11.17.19.31°
23.31 .(59.4523) .29.31.37.(83) {3163} .37.(3923) 37,15 511)
—3.5.11.17.19.37 2%.3.7.17.19.37 24.3.7.13.19.37.(73) 225.11.13%.19.37° — 25.72.11.13.19.312
(1465 193) (1237.5167) 23117 {6779) {59.701)
— 3113271212 131) 24.3.5.7.11 —2%3.5%11.17%.41 —223.11.41.43 —245.41.43.(61)
.(38 640 971) .(947.1093) (11 850 907) .(311.853)
—2%5.134.23.41°.43
(75T)
24a 28,3%8.56.23.31 —2.3274.11.13.19.23 —2%.32.11.19.29.31 5%.19.29.31%.(101) —27.5%112.19.31 —2.3.5%(103.113)
.29.31{31 013) .{1669.2017) {157 {15877 (684 799)
-253.11217 243.5.11 2'2,3,11.(82 479 329) 22.11.13.37.(199) 25,13.19.37
(167 846 051) {1084 097 879) .(2 226 769) (140 378 699)
3.5'°,19%.37.(6029) —22.3.19.37.41.(107) —2%3.19.37.41.43 —2.3.5.11.19.37.41.43 24.5411.19.23.37.41
.(397.509) .(97.255 637) .(347.113 11) 43.(33 329)
—22.11.19.23.37.41.43
A7.(185 821)
24b 22.3*1.55.7.232 2.32.112.23.31.37.43 — 25.32.11%.13.31.37 5%11.13.31.37°.43 —27.5°.11.13.29.31 —2.3.5%11.13.19.29
37 {33347 857) 43.(137.413 87 {70321) .37%.43,(79) .37.43.(2 352 433)
27.3.11.13.17.19.29 —24.3.5.13.19.29.37 28.3,112.13.19.29.37 —2%.19.29.43.(53) —26.11.29.43.(683)
.37.43.(606 521) .43.(1453.2731) .43.(294 223) (42 347 779) .(289 099)
—3.5511.13.29.43 22.3.11.13%.29.41.43 —2%3.11.13.29.41 —2.35.7%.132.29.41 —245112.13.172.23
{44337111) .(101.801 77) (739 283 693} {149.999 91) .29.41.(89 671)
22.72.13.23.29.41.47
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TABLE VIIL (Continued.)

n [~-2) 4. [-$5) 7
[—8) [10) [—11) (13) [—14)
[16) [~17) 19 [—20) [22)
I Denominator [—23) [25)
.(1019.150 91)
24¢ 28.3%%.5%,7.31 —2.32.13.23.29.31 — 25.32.29.31.417 — 56.11.29.31.{223) —27.5%.112.31.(73) —2.3.5%11.19
(189 391) (211 879) (2003) (109) {6 669 947)
2°.3.11.17.19.(97) 24.3.5.19.37° 212.3.17%.19.(173) 22.13.19.37 — 25111337
(53 549) (1225 099) (193) (19 418 807) (123 049)
3.55.11.37.497) 22.3.11.37.41.(97) 223.11.37.41.43 —23.5.72.37.41.43 —2%523.37.41.43
(7079) {70 181) (130 643) (19.727) (163.191)
—227°.23.37.41.43.47
(67.587)
24d 23.3%1 56232 2.32.11.13.23.29.31 —2%.32.11.13*.29.31 56.112.192.29.31.37° —2°57.31.37.41 2.3.5%.112.17%.19.37
31,37 .37.41.(1 460 923) .37.41.(61 057) 41.(239) (21 269) 41.(179 623}
—2%3.17.19.37.41 -243.5.11.19.37.41 —2%3.11.19.37.41 22.72.11.13.19.41 — 25.13.41.(463)
[(71.553 591 3) .(195 606 139) (107.258 114 1) .(101.708 833 9) .(3169.101 41)
—3.55.41.(619.1319) —22.3.192,(59.839) 22.3.43.(50 329) —2.3.5.11.43.(1249) —24.5411.194.23.43
(2609) (650 933) (353 263) (1553.7877) (83.1249)
—22.11.23.43.47
.(4337.175 81)
25a 322761 —2%.32.19.23.29.31 — 2.5%.19.23.29.31.412 -~ 257.11.19.31 —2%25.11.19.31 2311132292312
(4657) {179) (18973) (202 549) (239)
—25.3.412.(4729) 3.5.7.112.43%(11 897) — 2.7.(787.8443) —2.5213.19.37 19.37.(448 157)
(68 711)
—25.11.19.37.41 —223.5%.7.11.17%.19 2.3.19.312.37.41.43 235.7%.19.37.41.43 19.23.37.41.43.47
(7673) 232.37.41 (89) (467) (601)
2°.7%.112.19.23.37.41 2%,5%.74.19.23.37.41
43.47 .43.47
25b 23452717 —-2%32.29.31.37.41.43 ~2%.29.31.37.41.43.47 —2%.527,11%.132.23 —24.5%.11.23.31.37.41 2%.54.11.19.23.37.41°
.29.61 47.(2281) {19 463) 31.3741.43.47 .43.47.(487) 4347
27.3.17%.19°.23.37.41 —~3.5.7.17%.19.23.37 2%.7.19.23.37.41.43 2.11%.13.23.41.43.47 22.23.41.43.47.(107)
43.47.(67) 41.43.47,(1753) A7.(55 501) (50 047) {17291)
28.52.11.23.43.47 —~243.7.11.23°.43.47 —2.3.23.47.(193) — 2757711223 47 52‘192.(223.542947)
(35221 (62 617) {1212251) (7159)
211,72(1423.100 91) 2.52.72(30 563 453)
25¢ 24.3%4.52.7.17 —23.3%.23.29.31.(421) -~ 2.23.29.31.(7 181 087) 2°.5%.7°.11.19%.29% 22.5%11.31.(61) 2%.5%.11.19.(1 003 273)
AT (4789) .31(59) (83 443)
—2°3.174.19.29° 3.5.7.17%.19.(59) 23.7.19.(19 414 651) —2.112.13.37 — 22.37(1759.378 11)
(757) .(6043) (1488 419)
—255%11.37°.41 243.7.11.37.41 —2.3.37.41.43.(1367) —275.77.112.37.41.43 — 52.23°.37.41.43.47
(5297) (483 827) (1559) (2857) (1637)
21.72.23.37.41.43.47 ~23.5272.23.37.41.43
.(613) 47.(1697)
25d 24.3%4.5.29.477 2%.3%.11.192.23.29.37 —2.11.23.29.37.41 —26.52.7.37.41° 2251123741 2%,5%,19.31.37.41
41.(743) (46 589) {1373) {41897) (571)
—2°3.11.13%19.31.37 3.5.7.11.19.31.37.41 23.7.11.19%.312.37.41 —2.11.13%.31.41 — 22.11.31.41.{900 701)
A41(353) (2269) 43 (5197)
—25.5,31.(182 519) —203731(1473847)  2.3.11.31.43.211) 27.5.11.31.43.(86 771) 52.11.23.31.43.47
(2053) (17 341)
—211.11.23.31.43.47 ~2%5272.11.23.31.43
{181) 47.(1201)
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. Tables of analytlc formulas for Clebsch—~Gordan coefficients
with an angular momentum up to 5 are in Ref. 18; a very
concise table of 3jm coeflicients with an angular momentum
up to 2 can be found in Appendix C of Ref. 19. Using them

forj = 4} and 1, we get
V7

|n9619=¢ZFWi?

n V5.7
+ ‘/_Pz] TP F—— o

reg6 £ =g 49

1% 9.

1, V3
- — :t>+—— Y. (61)
\/_‘2’ 3 1% F3

- With the same I';, we also-obtain 3 I, representations the
components of which in |0 — ) subspace are

T, 560) = ————"5'7|54>
2y2.11
3 V5.7
———|50) — Y= |5 —4),
+2\[1*1| ) 2\/2.11‘ 4
A 1 1
r,660)=—|64) ——|6 —4), 62
I ) ﬁl ) ﬁl ) (62)
r760y =74 - V70
45 225
3T,
+_—4\/§ l ),

and 4 I',; representations the components of which in | ’D
are

- N 3
36 =4 5
[Fs36 £4) iz\/z__lgzt?:Fzml%ii)
347
2\/__}%%)
7
Fy6+d)= ++———4+d
g6+ 4\/—“21 2 J__ﬁl i
55
—(¥FD,
'“J_ (63)
. 11 1
T 46 = —
[Fs46 +1) izrl‘fi%):tz\/gllfii)
33
ZJ_!J§¢%>
N V1
g6 +1)= +3)— | +4)
T3 6 +4 N__I% 3 \[_5’ i
+,F—.
425
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Naturally, the corresponding components |I, + 1)
and |y +3) are also obtained. Butler’s’ tables include
these ' and I, representations, as well as the I representa-
tions for j = 4 and j = 1 but not the two other I'; the I'y
representations for j = § published by Butler are of our I"§
type because they can be built from the I'; representations
forj = 4 andj = 5, while his I'; representations forj = 1} are
of our I type because they can be built from the I, repre-
sentations forj=6andj=7.
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On a labeling for point group harmonics. Il. Icosahedral group
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The expressions for the I',, I's, I'g, I's, and I'y representations are given in terms of those of I'y
representations for neighboring angular momenta. The coefficients of the I', representations are
expressed in terms of those of I'; representations. Therefore, with an arbitrary choice of
orthonormal sets of I';, I's;, and I'; representations, orthonormal sets of other kinds of
representations are well defined and can be labeled with the labels of parent representations. All
Clebsch—Gordan coefficients are expressed in terms of those between parent representations (and
a few others). Tables of all nondegenerate I'y, 5, and I', representations are given, for the axes of
-quantization of order 5. With some degenerate I', and I', representations, which are also given,
any representation of integer or half-integer angular momentum up to 27 can be obtained using

some usual Clebsch—Gordan coefficients of SU(2).

I. INTRODUCTION

In a first series of articles,! we gave expressions for
point group harmonics in terms of reduced rotation matrix
elements. The first of these articles described a projection
method to obtain the coefficients of cubic harmonics quan-
tized on an axis of order 4, the second one described the
application of this method to the icosahedral group, and the
last one to the cubic group with a quantization axis of order
3. We wanted to give tables of coefficients in terms of integer
as far as possible. However, we noticed relations between
different kinds of representations, which did not seem to be
known until now. An account of these relations and a study
of some of their consequences have been given? for the cubic
group. Similar relations for the icosahedral group are pre-
sented here.

For the icosahedral group, we use the same axes as in the

previous work.? We choose one of the six rotation axes of
order 5 as the z axis and another one in the x-z plane. As the
rotation of 7~ around the y axis is an element of the group, all
the coefficients are real; this is an advantage over other nota-
tions.® The five kinds of representations for integer values of
the angular momentum j and the four kinds of representa-
tions for half-integer values have been presented” and will
not be repeated here. ‘

As for the cubic group, the number n, ( j) of representa-
tions I'; obtained for a given value of the angular momentum
J can be derived from the characters of SU(2) and of the dou-
ble icosahedral group. They are given in Table I with their
generating functions which we define by

8lx) = Y xn,(j). (1)

i

TABLE I. Multiplicities and their generating functions. The second column gives the multiplicity for a given value of j, using the a’s quoted at the bottom of
the table, The generating functions of the last column use x? instead of x in order to simplify the relations between multiplicities for different values of j, integer

or half-integer.
n{j) gix)

r, {a, + 15a; + 20a; + 124, + 12a5}/60 (T-%)(i?ﬁ
r, (@, — 5, + 2,1 +5) + 2a(1 — {5)}/20 (T%%q
r, (@, — 5a; + 2a,(1 ~5) + 2a4(1 +5)}/20 (TZ%TO)
r, {a, + 5a, — 3a, — 3a}/15 3 ji(‘i)ar f)x“’)
I {a,+ 3a, — 4a;}/12 Tl—Tf)(‘lTx_“]
I {a, + 10a; + 3(1 + \S)a, — 3(1 — 5)as}/30 T _xgl ‘;;1)‘1—8);:'2)
r, {a.+10a3+3(1—43)a4~3(1+3/§)a,]/3o HT*‘;(;_—W
I, {a, — 5a, + 3a, — 3as}/15 (1—;1}‘)%6
r, {a, — 2a, + 2a5}/10 2

(1 —x%)(1 —x'9

a,=2j+1 a,=sinla,n/2) a,=sinlaw/3)/sin(z/3)} a,=sin(a,7/S)/sin(z/5) a5=sin(2a,7/5)/sin{2%/5)
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Among them, g,(x) has been known for a long time.® Explicit
values of the multiplicities for the 15 first integer and half-
integer angular momenta are given in Table II. They will be
of great help in our demonstration.

The coefficients of the I'; representations for which the
multiplicity is unity are given later in Table V. They are quite
simple but not so simple as for the cubic group.* Their square
is the product of prime numbers smaller than 2j, divided by a
large power of 5 and sometimes by 2 and/or 3; often a larger
prime number appears but this can be taken out of the root:
the first of them is 41 for j = 20 and the largest of them is
586 471 forj = 59, which is the last nondegenerate I', repre-
sentation which exists. The first I, representations with
multiplicity 2 appear for j = 30; no rotation could be found
between these two representations, which lead to simple co-
efficients. However, with the coeflicients of the I'; represen-
tations for j<29, we can express the coefficients of any kind
of representation for j<27 except for the I'y, I',, and I, re-
presentations. The coefficients of the I, representations
with multiplicity 1 are given in Table VI and those of the two
components of the few nondegenerate I, representations in
Tables VII and VIII; they are as simple as those of the I,

TABLE II. Multiplicities of the irreducible representations for the first 15
integer and half-integer angular momenta. The last lines give the period of
the multiplicity and the increment. When the angular momentum is in-
creased by the period, the multiplicity is increased by the increment. This
table has been shortened: there is one I, representation for
1= 15,16,18,20,21,22,24,25,26,27, and 28 and none for / = 17,19,23, and
29.

i1 r, b r, r, rs r, r, r, r, j

0 1 0 0 0 0
1 0 0 0 172

0 0 1 0 372
0 0 0 1 372
0 1 0 1 772
0 0 1 1 9/2

1 0 1 1 1172

1 1 1 1 13727

0 0 1 2 152
0 1 1 2 1772

1 1 1 2 192
10 1 1 1 1 2

1 0 2 2 212
11 0 2 1 1 2

1 1 2 2 232
12 1 1 1 2 2

1 1 1 3 252
13 0 1 2 2 2

0 1 2 3 2712
14 0 1 1 2 3

1 1 2 3 292

Per. 30 10 10 15 6 15 15 15 5
Inc. 1 1 1 2 1 1 1 2 1
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representations. The coefficients of the I', representations
can be expressed with those of the I'; representations. The
Tables IX-XI give the coefficients of the degenerated I, and
I, representations needed to reach j = 27 for any kind of
representation: their values are quite arbitrary whereas those
of Tables V-VIII are fixed to within a sign.

In next section, we show that the coefficients of the I,
Is, I, Iy, and I, representations for a given angular mo-
mentumj can be obtained by multiplying the coefficients of a
T, representation for a neighboring angular momentum / by
a Clebsch—Gordan coefficient of SU(2). These sets of repre-
sentations are orthonormal and each representation can be
labeled by the angular momentum / and the extra label & of
the parent I'y representation from which it is built. The re-
maining I';, I',, and I, representations have dimension 3, 4,
and 2, respectively. From the decomposition into irreducible
representations of the direct product of two representations’
given in Table III we see that the I, and I', representations
can be obtained from the I, representations. Then, only the
I'; representations are left; the I', representations can also be
obtained from them. So, when the I', I';, and I'; representa-
tions are known and labeled, all the other kinds of represen-
tations are known and labeled. There are three labelings of
T, representations, as was also the case for the I'g represen-
tations for the cubic group.* To distinguish them, we shall
denote them as Iy, I'§, and I"j representations when the
parent representations are I}, I';, and I'; representations,
respectively. In the two cases of degeneracy which appear for
an angular momentum smaller than or equal to 8, these re-
presentations differ from those published by Mc Lellan® but
agree with those published by Butler.® As for cubic harmon-
ics, Butler’s criteria of simplicity lead to the same results at
those presented here.

As in the case of cubic harmonics, with three compo-
nents of three representations

L jamy =3 xzliw), @)
p=ml($
one can define an icosahedral 3jm symbol by
(I‘Ja r,ja' I‘,-.j"a")
m m’ m”
a a a” j j, j”)
= X3 x% . X% . R (3)
“‘Z# F (u, uop

We consider that as a sum of 3jm symbols of SU(2) weighted
by the coefficients of icosahedral harmonics. In fact, since all
our coefficients x/7 are real, this icosahedral 3jm symbol co-
incides with the f'symbol defined by Kibler.® Its dependence
on the magnetic quantum numbers 7 is eliminated by divid-
ing it by a similar expression obtained with the “basic” rep-
resentation

|yiqi;h> = zxq,p l%’l‘)s 4

which is the representation of the same kind as I'; but with
the lowest possible angular momentum. The values of the
angular momenta g; can be found in Table II. In fact, when
I';» is not unique in the product of I, and I';, the depen-
dence on magnetic quantum numbers is a linear combina-
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tion of the icosahedral 3jm symbols obtained with the “ba-
sic” representations and those obtained with the “next
basic” representation ¥;. (next lowest angular momentum)
in the third position. In the case of two I'y representations
and a I's representation, one even needs a “third basic” I's or
I, representation, y;. . Writing

(FJa r,ja' T j"a")

m m’ m”
=(lja I'ja’ I.j'a”)?

(Viqi Yeq:r Vi qi')
X A Ay An
m m m

+(lja Iija T.j"a")?

x(yf" riq'f Vi z.-;)

m m m
+(Lja Iyja' Tpj'a”f®
x(?”.;.- rgf %-;qﬂf), 5)
m

we define what we call “icosahedral 3I" symbols,” which are
reduced matrix elements. All the 3I" symbols are unity
between basic representations. They are the ratio of reduced
coefficients f(( )) of Kibler or of the 3jm factors tabulated by
Butler by the reduced coefficient f{( )) or 3jm factor for the
“basic representations.” The reason why we adopt such defi-
nitions is that they allow us to use the Racah algebra of SU(2)
and that the results can be easily translated by anybody into
his own notation. The icosahedral 3jm symbols (3) are invar-
iant by a circular permutation of their arguments; for an odd
permutation, there is a phase (— )+ 7+ /", The same holds
for the icosahedral 31" symbols if the kind of the third repre-
sentation does not change; in the other cases the following
relations hold for a circular permutation:

(Lol ol) = (1T 6T ),

6
(Folslo)® = Wl “
(Fslols) = (s olg) — 13T 6l)?, )
(Lol ol)? = — YRS,
(F 5F 5F 4) = (F ,J‘ sr s) - i\/—Z_(I“ ol sr 5)(2), (8)
(F sr 5F 4)(2) = %/;(F 4F SF 5)(2);
(el ol ) = (FyI sIy) — i\ﬁg(r WL sl 9)(2)

= (Lol Tg) + 1ol Dol ul ),
(sl oI 4)(2) = %\ﬁ (o8l 9)(2) = %\/Z(F ol 4l s)(2)§ (9)
(F9r9r4) = (F4F9F9) + i\/g(r4r9r9)(2)r (10)
(ol oI 4)(2) = - i\FzT (oL oI 9)(2)2
(Llol's) = (I'sIgl o) = ('l sI), (11)
(el 5)(2) = %\E(F ssl 9)(2)
= — WAL,
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(FLsTs) = (STl
(FLsrs)™ = — RSl
+ WAL,

(oIl 5)(3) = - ﬁm(r slol 9)(2) - é\/_zsi (sl 9)(3)-

(12)

This comes from the choice of replacing always the third
basic representation by the next basic to define the icosahe-
dral 3I" symbols when there are at least two of them. Rela-
tions (6)~(12) are deduced from the icosahedral 3jm symbols
between basic and next basic representations. Note that
there is only the (I",I",I",)? icosahedral 3I" symbol because
the icosahedral 3jm symbols between three basic I, repre-
sentations vanish. In the third section, the icosahedral 3I°
symbols are expressed in terms of those between parent re-
presentations.

There are many applications of these results. In the last
section we define a fictitious spin for I',, Iy, I's, I'g, and I'y
representations and we give tables of coefficients of I"}, I';,
and I, representations needed to obtain all representations
for angular momenta up to 27. For the tables already pub-
lished, those of Cohan' relate to integer angular momentum
up to j = 14 in decimal values and those of Mc Lellan® and
Butler® go up toj = 8 in terms of integers.

Il. EXPRESSION FOR OTHER REPRESENTATIONS IN
TERMS OF THE I'y, I'7, AND I'; REPRESENTATIONS

For a given value of the angular momentum /, the
expression for a I'; representation is

\IM1ad +)= 3 a%,|im), (13)

m=0{(5)

wherea? ,, =(—)'*™a¢,. This notation is not the same as
in a previous work?: the sum over m is extended to negative
values and m = O is taken into account with a vanishing co-
efficient for an odd value of /. The index a labels the #,(/)
different orthonormal I, representations which exist for this
angular momentum.

We shall show below that

ITijlad) =2+ DRT+1) 3 (—)-*+»

m=0(5)
(! s T )
xai(, 5 2 Jiw, (14

for a given value of j and all the values of (/,a) for which the
3jm coefficient exists, is a complete orthonormal set of I,
I, Iy, I's, or I'y representations when s =14, 1, 3, 2, or §,
respectively. This result is trivial when written between basic
representations because |so’) for s = } to § are the basic I,
I, I'y, I's, and I'y representations of the icosahedral group
as seen in Table II.

Among the other kinds of representation, the I'; repre-
sentations have the lowest dimension. We shall note by / the
angular momentum of the parent representation and by j
that of the derived representation, independent of their val-
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ue. For a given half-integer angular momentum /, the two
components of a I'; representation are

NI +P= 3 bEAljim), (15)
maz= + (3/2)5)
with b8, =(—) ~™b;},%. Then

L j1B £8) = €525+ 1)21 + 1)

X ¥ (—ferep e

m= + (372)(5)
s j ) .

(A ) (16)
is a complete orthonormal set of I', representations when
s =} and of I'; representations (which we note as I"§ repre-
sentations) when s = 1 if 5#3. The phase ¢,, turns out to be
(— )2+ for a I, representation and ( — )° for a I"}, repre-
sentation. The component |I"; 4+ 3) can be obtained with

s j1B+3

=T +1 [ _y-ten
Y10 m=:f:(3/2)(5)
1 -
Xblﬁp(m +1 _J#)ll.u)
i—— — )t
V10 ma=FT3/2¢5)
N )
"( 1 g |jud i an

The I'; representations are not given by these formulas.
They have a component in the |0 — ) subspace

M 1j0—=)=3 cllim), (18)
m=0(5)
withc]_,, =(—)'*"*'¢l,, and acomponent in the | + 2)
subspaces
N j+dy= 3 diEim), (19)
me= + 2(5)
withd =%, = (—)*™*d ;7. With them, a third set of I,

representatlons can be obtained: we denote them as I"{ re-
presentations. They are

IP3jly£D =€,.,20+1) 3 (-
m=0(S)
1 3 i

xc}C..(m + _J”)Ij/t),

IT3jly £+ =€.3nV220+1) 3 (-

mpoe + 2(5)

!
caz(l ) 2, D)um, 20
ryjlysd= Jz'(21+_‘[;— (-

mu= 2(5)

xdzi’(,: ﬂii ”)lj,“)

__2_ (—)—12+n

Jg m-; 2(%)

)I—l/2+,u

)I-l/2+[4

)I— 1724 p
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xagf(, 2 D))

The extra phase is €, = (— )2+ °. Here also, the compo-
nents + 3 are a-mixture of coupling to § and — §. The I';
and I'" § representations do not appear in as simple a form as
for the I', representations. '

The kind of representation given by formulas (14), (16),
(17), and (20) is straightforward. The completeness of the sets
of representations can be deduced from the generating func-
tions when their orthogonality is proved. For example, the
completeness of the I'y, I'§, and I § representatlons comes
from the relations

8olx) = (1/x° + 1/x + 1/x + x + x> + x°) g, (%)
— /x5 —=1/x—1/x—x—x°
=(1/%* + 1+ x%) g5{x) = (I/x + x) g5lx),  (21)

where the terms subtracted correspond to representations
forbidden by triangular relations.

To show that these sets of representations are orthonor-
mal let us consider the scalar product of two components.
For simplicity, we discard the components + § of I'§ and
I' j representations. Such a scalar product is

(ri,jll 141 &llri,jl2 v, 0)
= €6 — )" (2, + 1)(2s, + 1)(2], + 1)

S. s
x;;{(ZL +1) (02 ‘U
) 2 i |

L
M) NLM), (22

with
N({LM)= 2+ 1 2 ( ) msz,m, X m,
x(ml W) (23)

where x stands for a, b, ¢, or d; v for a, B, or ¥; and € is the
extra phase which appears in (16) and (20). When the parent
states are both I', representations, the vector

)=§N(L.M)|LM> (24)

is also a I', representation. Therefore, the values of L are 0 or
6, 10,...; L =0 is the only value allowed in the sum of (22)
because L<s; + 5,. When the parent representations are
both I, representations, the vector (24)is a I'; or a I'; repre-
sentation: the first nonzero value of L is 3, but it is not al-
lowed in the sum of (22). Similarly, with two parent I'; repre-
sentations, the first nonzero value of L is 2 with (24) being a
I's representation, but this value is not allowed in the sum of
(22).
So, with two parent representations of the same kind,

(ri.jll 4! 61|Fi,j12 v, 8,) —5s.s, 60’ oy 51, I N(0,0),
- (29)
N(0,0)= Zx X% =0,,,,.

With two parent representations of different kinds,
there is no term in (22) except when computing the overlaps
between Iy, ', and I" ; representations. Witha I';and a
'} representation, the vector (24) is a I', representation with
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L =1. Therefore, the N (L,M ) are the components b 75,5, of
the basic I', representation multiplied by y27, + 1 and by the
icosahedral 3jm symbol between the parent representations
and this basic I'; representation. Using the icosahedral 3I"
symbol (5), the overlap is

<F9jlxa&¥r§jlzﬁa')
=(— =2 52+ )2+ 1)

1
X { i %}(I“, Lha LB I57/72). (26)
L L
The overlap between a I'; and a I § representation can
be obtained in the same way:

(NgjliadlCgjlyd)
==t 12J6(2, + )2, + 1)

3

24 Ve noy na )
L L

The overlap between a I § and a I" § representation involves

the “basic” Iy representation

(F3jhBolrsjhyd)
= (=)L + 1)2L + 1)

X{I : 3} (LB DLy Ig3/2). (28)
L L j

As seen here, some results involve other basic representa-
tions besides the I',, I';, or I'; representations.” For cubic
harmonics, any product of the parent I';, I',, or I'; represen-
tations is a I';, I',, or I'; representation. Here, a product of
parent representations can be any kind of representation,
i.e., the set of parents is not a closed set.

Some other relations can be found between different
kinds of representations, but they are not as simple as those
given above. For example, there is a relation between the
generating functions of I'; and of I'; representations:

&%) = (1/x7 + x7) gylx) — 1/x7 — x°. (29)
For j larger than or equal to J, the I, representations can be
obtained from the I'; representations for / =j + 7. The I';
representations obtained from the I, representations with
1 = j — Jare orthogonal to those obtained from the I, repre-
sentations with / =j + J. However the I'"; representations
obtained from several I, representations with the same / are
not orthonormal: their overlap can be expressed with the
icosahedral 3I" symbol (I, la, ", la, I'\6); consequently, if
these I'; representations are chosen such that (I, la, I'
la, I'y6) = const X 8,,, ,,, the I'; representations are orthog-
onal but their norm depends upon the values of (I la I'
la I',6).

{ll. THE 3jm SYMBOLS OF THE ICOSAHEDRAL GROUP

As for the cubic group, the icosahedral 3jm symbols
defined by (3) can be expressed in terms of those involving
the parent I, I',, or I'; representations. As long as we avoid
the components j:§ of I'; and I'§ representations, this
expression is
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TABLE III. Decomposition of a product of irreducible representations.

I

r, Iy

Iy

I

I,

r

r, r,

o
o
+
[- - V)‘:
a5 h:
L.t o
SRR TSN
et T
ek
Attt
Sl
Y
o +
X gd
+  +1
SAS S )
++ ot + +
ST
+ b+ + A+
MWW
o
+
SR S
+++ +++
Ll
e
+
< oS g
Lttt
SISy
X
g @
Ry Q7
+ + 4+ + +
MM LN
+ 4+ + ++
MWW NN
++++++++
NN W WY
o
+ s
L K
] N
+ + -
W N
+++ + ot
SMNWW ST,
B G
SN
o
+ -
ol R
+ + + + +
WMWY
+4++ 4+
WM NN WS
o
+ R
Lo SR
+ ++ + +
SO
+4++++ ++
AN W
AN WS W
SN WM W
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T, jihivi Tjalbvy Tjslv
( l]: e '],2. 2 ij ’ 3)= 2 A (515, 530 0203;kLM)E‘B(j1j2j3slS2s3 Iy I;L kL)
gy 1] 4 kLM T
XC(l,, vy iy, I, Lv, myL"; I, Lv, i LM ), (30)
where
Als,5,550, 0, 05k LM) = (— P+ 5 e e 6 EFT(2 2 K (5 ) 31
o, 0, K —0; kK M
is almost all the dependence on magnetic quantum numbers,
B(jijajs$i 8y il kL) = (= ¥+ 2=5 2L + INR2K + 1) J2L' + 1
XV(2sy + 1)2s, + 1)(2s; + 121 + 12 + 125+ 1)
. PR PR
k L'
ST B OO (32)
07 I, I, L'
gathers the dependence on angular momenta and
Cr, L i, r,Lv, i, L "; I, Lv, iy LM)
A } I, L' L' I L
=2L" 1 _ WMy, Vs vy ( 1 2 ) ( 3 ) 33
+ - m;r:n;M'( ) 'xI, m, 'xl2 m; xI, my m, m, M, —_M' m, M 4 ( )

the I',’s are the parent representations of the I';’s and x7,, are their coefficients. The possible values of (k,L ) are limited by the
triangular relations |5, — §,|<k<s, + 5, and |k — 53| <L<k + 5;. The maximum values are 5 for k and 7 for L.

Except in some cases involving I"  and I'" § representations, the number of different (k,L ) values of the sum (29) is exactly
the number of different basic icosahedral 3jm symbols (see Table III). For example, if the three parent representations are I';
representations, the coefficients (33) are those of a I'; representation. Therefore, the possible values of L are 0, 6, 10, ... . The
value L = O is always allowed by the triangular relations; for the icosahedral 3jm symbols of I',I oI g, I'sI 5l g, I'sT oI, the
value L = 6 is possible; for I'sI oI, there are two possible values of k with L = 6. With an arbitrary combination of parent
representations, the other possible values of L are 3, 2, 3, ], 5, and 1, which appears only for I, gI"g.

When L = 0, the coefficient (33) is the 3jm symbol between the parent states and L ' = /;, k = s,. If the parent representa-
tions are I, representations, the coefficient (31) is essentially the 3jm symbol between basic representations and

(Fyjihive Tojolavy T jalyve) =2, + 1)(25, + 1)(2s, + 1)(2]; + 1)25, + 1)2, + 1)

jl j2 j3
x Sl N SZ S3 (FPI ll Vl FP: 12 V2 rpz 13 V3)- (34)
L L L
For L #0 the expression (33) can be rewritten as
Cc(r, L,v my, I, Lv,f, I, Lv, myLM)
a1 r,1 r,L'v\(r.L'v T,1 I,L
=L F1 Z (— )Jr +m( p|A1 vy P2A2 V2 ? " V)( i A'V psAs V3 i )xL’M’ (35)
i m, m, m —m my M

where I'; stands for I, I'g, I's, I'5, I3, I3, and I'; when
L=1,32,3, 5, and 6, respectively, and the x, ,, are the
components of these representations. These limitations
come from the fact that L = 6 can be obtained only with
three I, parent representations, L = 5 can be obtained also
with two I, and one I'; representation, etc. The phase comes
from the transformation of the components under a rotation
of 7 around Oy (see Ref. 2): j, is O for I'; and I's representa-
tions, 1 for I';, and § for I'; and I representations. The sum
over i’ extends to all kinds of representations, which can be
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I
obtained by the product of the I', and the I', representa-
tions and by the product of the I',  and the I'; representa-
tions. This sum reduces to one term when at least one parent
representation is a I, representation. For I I"'g I'g, I',
r;ry,and 'y I'; 'y the I'; representations are I, and
Iy, for Iy 'y ', they are I'; and I's. In these four cases
there is only one set of values (k,L ): the number of different
(k,L,i") values is always the number of basic icosahedral 3jm
symbols.

As the products of any two representations involved in
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TABLEIV. Values of D used in formulas (36) and (37). The number in par- TABLE IV. (Continued ).
entheses refers to the 37" symbol when it is not unique. When there is more

than one term, values are given in sequence without repetition of the 3I" IRAA k L i I Coefficient
symbols of the first columns (for example, I", Iy I"y). The square of the coeffi-
cients and their signs are given. r,r.r, 0 0 r, r, 217
F o o o) 1 3y I, I, —2Y/3.7)
iyisd kL i i Coefficient f ¥ ¥ 1 3 I, , 2
r, r,2e
.o o o I, I 1 LI, i1 "o //77
o, 1 o rn, o 1 r.r.r, i i 8 y i
nn,r, 0 0 r, r, 1 rJ.r, 3 3 Iy r, -2.311/7
n\r.r, y o0 rn, I,2n F o ¥ o 3 i1 n, r, -2/57)
ey 2 o rn, I, 1 3 1] I, I, -223%/57)
I\l y 0, L1 TI42) 3 3 L, I, -23/51)
\r,r, 0 o0 I, I,2 o 2aiss
LT, 3 o rn, 1 i i » I 29/03%50)
nrer, i 0 rn n,1 r,r.,r, 0 0 r, r, 2 o
n, r, -2
I,r,r, 0 O o, o1 LIl ! : ? ? /
J ol 0¥ o 1 o r, 1 ol o¥ ¥ 3 o I, n, -1
Fo¥ ¥ o 2 0 I, I 1 rr.r, 3 3 I, r,1n
nn,r, 1 3y Iy I, —-2'3 ) o o¥ o8 2 1] , r, =271
) % 29 o 1 3 , I, 7 LT, 1 } I, I, 25/
Ja¥ ¥ ot 3 3 n, n, 23 2 3 oL, n 2:-3’/7
J 4 i i 3, I, 2 3 I, r, -25/1
J ol ¥ o 1 o I, I 1 J o ¥ > 3 ] I, r, =271
LIl 3 3., 1,7 rJr,r, 3 3, n,2u
rrr, 3 i r, n, =271 rJI,r, 2 3] I, n, 2
r,rsry 2 0 r, I, 1 3 3 r, r, 2835/7
) o ¥ o3 3 o I, I 1 ) o o¥ oY)} 2 3 I, I, 2°3/57.11)
Il el 3 o I, I 1 3 3y I, r, =201
r,rn,r, 1 H r, r, 2 r,r,ry 2 3 r, r, -2°/3.7)
r 3 ] n, r, =257
kel ; AN A IO 2 3 I I, 257
2l gl g 1 1 _ a8
~or, ; o I I o1 3 3] I, r, =21
s ho¥ o¥ o} o o I, It
ik L S L Ir.r, i o oI 1
F ¥ 97 2% 3 6 n, I, 1 I,rr, 3 3 n, 1
Lo, ] o r, I,1 r.r,r, 3 ] r, r, =27
L,ry2) 1 6 o, I, -313/2° ) o o¥ X0} 4 3 I, n, ¥
) o8 o8 o o o I, I,1 TSIl 2 o0 ol
I, 0 o L, L, 171 Israriy(2) 4 6 I, I, 5133
T 2% ¥ f o 2 I, I,*% J o o¥ 0¥ 3 o I, =I,1
L,r.r, 3 3 Iy I, 2377 ) o o o 3 o I, =1
I"J'J’. 5 0 rl P-, 2:.11/72 rsI"_lrs 2 ; r7 r_’ 26
thetet b3 L LA rnr, 2 3 I, 2
2
J o o o 2 3, I, 7 L.IL y Y
r,rr, 2 2 Iy I, 51 )
4 r $r sr 7 % ; r 7 r 1 2
) o o o 2 i I, I, 2
o rynr, i o n, 1
Jo¥ ¥ o) 2 3 I, I, -7
Fo¥ o¥ 0¥ 5 o I, =1
Irery i 3 r, ry, -7 2
; L Ty2) 3 6 I, I, —313/72
r,nor, o o I In,2
Lo, 3] 12 n, 2
r,rr, 3 3 ry r, -227 f o o8 o8 3 0 r, n
¥ o8 o o 3 3, r, -7 Ihr2) 3 6 I, I, —213/5
I 49 4% i 3 n, n,b7 T, 3 o I, 1
o oN 8 3 3 r, r, -7 oI ry2) 1 6 I, I, -31y2
f o o o8 3 3 r, I, 7T Isryry3) 3 6 I I, 313/5
IIrr 3 3 I, r, -7 Tl 0 0 r, r, 1
Nh2) 5 3 I, I, 57T/0P b o o o8 1 o I, I, 1
H 5 r, L, 11/23) r.or.r, ) 0 r, r,?2
r.or.r, 0o o0 I, I, 27 J o o o 1 o r, 1
r.r,or; t o r, I, =277 ) o o o 2 o rn, 1
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TABLE IV. (Continued ).

iyiyds k L i ¢  Coefficient
J o 2% o8 3 3 r, I,17
rJar, 3 3, r, =27
¥ o¥ o8 2 o0 I, I 1
I, o o n, I I
fa¥ ¥ o} 0 o I, I, 1

29 2% 8 i 3 L L7

fo¥ o o 3 i r, nr, -2
Fa¥ o ok 3 ] r, r, —2»
yrr, 3 3, I, 21
F ot o ¥ i 31, 2
Iyl 0 0 Iy r, t

F ¥ o o8 1 o I = 1

I r 3 3 r, n,71

Fa¥ ¥ ) 3 3] L, I, =21
f ool o 2 o I, I,1
o, 1 o I, I,1
Lo, 3 3, I,7
nJ,r, 3 3 I, r, =271
Iy ry2) 4 ] r, r, 2/%
T 2 ¢c n, 1

L rd2) 4 6 I, I, 513/%
f ¥ ol o o o I, It
Lo, 1 o I, =1
Irry2) 5 6 I, I, 3111
¥ ¥k 3 3, 01
TolL,Iy(2) 3 5 ry ry71
Ihr, 3 ] r, r, =27
L 2) 4 3] I, I, 2/%
AN oy 2 o I, I, 1
LIrs(2) 4 6 I, I, 513%
Tl I(3) 5 6 I, I, -su/11

the 3jm symbols of (35) give only one representation of the
third kind, the 3/" symbols are unique and we can use them
to factorize the dependence on magnetic quantum numbers.
We obtain

il Toj2lvs Fi,js Ly vy)™

= 2 D(u)(il,iz,is;kLil)

L,k,i

XLZ\‘(ZL "+ 1) B(jyjajss1821, I;L'kL)

><§:(I‘Pl Lhv, I,Lv, I'L'Y)
V "
X L'y I, Lvy I;L), (36)

where ()™ is one of the 3I" symbols defined by (5) and

’ (n)
> D"y iy ixkLi) (7:‘ Ve i )

~ ~
" oy 0O, O3
{_ )/:+ﬁ'+s,—d,

€1€62€3
% (s1 s, k) 53 k L )
oy 0, K s kK M
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X (7:5 s ’f)
m, m, m
yl’ 1’1), yi

| X({_ PO .ﬁ)x,_,u. (37)
These coefficients have been computed for all icosahedral
3jm symbols and are given in Table IV. However, due to the
length of the table, the I'; and I'" representations have not
been included in this table; the coefficients which vanish are
notincluded. In most cases, there is only one couple of values
(k,L ) for each 3I" symbol. When one of the first two parent
representations is a I'; or I'; representation, two of them are
present but a permutation can avoid these difficulties. The
intermediate representations I" ] are I, I';, or I, represen-
tations, except for {I,I,Is) for which it is a I's, and
(D3 D) (DLW Is), (351 g) for which it is a I'g representa-
tion, but this disappears by circular permutation.

So, all the icosahedral 3jm symbols and the 3/ symbols
can be expressed with two 31" symbols: one involving two
parent representations and a neighboring Iy, I';, or I'; repre-
sentation of the third representation; the second involving
this third representation, the intermediate representation,
and one of the two lowest I'y, I';, or the lowest I';, I'g, or I's
representations.

IV. CONCLUSIONS

As in the case of cubic harmonics, the labeling system
presented here generates some properties. One of the most
important is the definition of a “fictitious spin” for I, I,
I, I'g, and I'g representations. Table ITI shows that the pro-
duct of these representations with a vector thatis a I', repre-
sentation includes a representation of the same kind. For I,
representations, there are two “fictitious spins” and for I,
and I, representations, there are none.

The matrix elements of the vector J between two repre-
sentations are the icosahedral 3jm symbol of these two repre-
sentations with the I', representation for j = 1 (the parent
representation of which is the I'; representation with / = 0)
multiplied by the reduced matrix element (j,||J|lj3) =6, ;,
XVji(j1 + 1)2j, + 1). The fictitious spin is proportional to
the overlap between parent representations; therefore, it is
diagonal. For the I',, s, I, and Iy representations, when
divided by its value for the basic representation, it is

a=3 i+ 0+ss+ )10+ )/sls+1).  (38)

However, fora I, representﬁtion, when divided by the value
for the basic representation (j = 3, s = 4, / = ) we obtain

a=—3{ji+H+3-10+ 1} 139)

In Table V we give the components of all the nondegen-
erate I, representations. We could not obtain simple choices
of the doubly degenerate representations for / = 30, 36, 40,
etc. This table can be used up to / =29 to build the other
representations. Values for higher values of / are given be-
cause they are well-defined constants.

Table VI gives the coefficients of nondegenerate I, re-
presentations, and Tables VII and VIII give the coefficients
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TABLE V. Coefficients of nondegenerate I', representations. The coefficient is the square root of the quotient of prime numbers given in the table by those of the second column, with the sign given in the table.
Numbers between parentheses are not in the square root. Base vectors are symmetrized as in a previous work.? There is no I', representation for missing values of / smaller than 30; there are two of them for missing

[eukey senboer 5861 18900 ‘01 "ON ‘92 'IOA *"SAud "YBN T

evve

values larger than or equal to 30.
[0+) [5+) [10 +) 15 +)

1 Den [20 +) [25 +) 30 +) 35 +)

0 1 1
6 52 11 2.1

10 3.5 13.19 ~23.11.19 21117

12 L3 33717 221113 2.3.13.19

15 2.5 —5.23.29 2.3.11.29 7.11.13

16 235 2551931 —3.5.13.17.31 —2.7.17.23.31 3%.17.23.29

18 57 5.11.17.23 24.32,5.19 2.3.7.11.19 2.19.29.31

20 5° 5.7.23.29 —22.11.17.19.29 2.17.19.(41) —2411.19.31
2.11.13.31.37

21 57 —29.31.41 —2213.41 3.13.17.41
17.19.37

22 3.5 2.3.5.11.19.31.37 —~7.13.23.31.37 —2.7.17.23.29.37 —23.29.(103)
13.19.23.29:41

24 st 5.7%.13.23.29 24.3.11.(59) 22.19°.31 22.32.11.31.37
2.31.37.41.43

25 35" ~ 72313743 2.3.7.11.19.37.43 — 72.43.61)
32721141 2.5.11.23.41.47

26 357 2.3%.13.29.31.41 —5.7.1123°41 27.5.7.19.23.41 3.5.23.37.(139)
— 5.37.43.(89) 2.72.17.37.43.47

27 2.3.5' — 17.19.37.41.47 — 241247 2.3.17.19.47
25,17.19.23.43 5.7.13.19.23.43

28 2357 27327313743 —5.11.13.29.37.43 —2.3.5.13.17.23.29.43 —25.23.29°.41
—22.3%5.13.29.41.47 7.17.29.41.47.53

31 2.3.51 23.7.37.41.43.61 —5.7.11.19.23.43.61 —2.5.7.17.312.61
2.13.47.61.({79) — 2.3.52.47.53.61 —3.19.29.47.53.59

3 23.5"%  25.11.17.29.37.41.47 — 2%.32.31.41.47.(103) 34.5.7.19.23.31.47 2.3.5.31.43.0953)
2.32.7.31.43.(463) —2.3.74.19.31.43.53 7.19.29.43.53.59.61

33 2.5 22.32.41.43.47.53 5.47.53.(79) 28.5,7.19.53
— 2721319 —2°3.527.29.37% —3.7.29.31.59.61

34 3.5 3.7211.17.19.31.37.43 —22.7.13.43.59% —2.325,7.112.29.41 —2.3.5.29.41.47.(79)
—2%.13.19.29.41.47.53 —22.23%.41.47.53.59 2.31.41.47.53.59.61

35 2.3.5" 7.41.43.47.53.59 —2.3.7.11.13.29.47.53.59 2.3%.13.29.53.59.612
—23.32.11.19.29.412.59 52.13.(3001) - 243.112.31.61 —2°.7.11.17.23.31.61.67

37 3.5 —7.11.29.43.41.61.67 2%.3.7.23.31.61.67 3.17.31.47%.61.67
—17.31.53.61.67 —2.5%.7.13.29.53.59.67 22,29,53.59.(79) 2.3.17.23.29.53.59.71

38 3.5 2,3.13.19.37.41.43.47.53 —3.17.47.53.(1933) —2.112,17.23.29.31.53 35.7°.112.23.29.31
73.31.(6269) 2.7.17.59.61.(563) — 22.32.7.47%.59.61.67 2.7.23.59.61.67.71.73

39 2.3.5% —2.3,7.11.23.31.47.53.59 —22.7.17.53.59.(107) —22.3.29.59.(659)

—25.19.23.(79)

5%.7°.17.23.31.61

2.3.31.61.67.(283)

31.37.61.67.71.73
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TABLE V. (Continued ).

[0+) [5+) 110 +) 15 +)
[20 +) [25 +) [30 +) B35 +)

1 Den [40 +) [45 +) [50 +) [55 +)

41 3.5 — 3.5.7.47.53.59.61.71 2.11.412.53.59.61.71 —3.7%.13.29.31.59.61.71
—5.11.19.23.31.532.71 23.5%.13.17.23.432.71 —2%.3.5.412.61.79* 2.7.11.19.37.67.73
22.3%.13.19.37.67.73.79

43 3.57 —2.5.7.13.37.53.61.67.73 3.19.61.67.73.(89) 2!13.7.31.61.67.73
22,5.7.133.59.67.73 —24.5%17.19.23.59.73 — 5.19.29%.432.59.71 2.3.7.37.59.71.(109)
32.37.41.59.71.79.83

44 3.5% 2.32.5.7.11.23.41.43.47.53.59 —2.5.53.59.(37 573) ~ 3.7.132.17.19.37.47.59 2°.32.132.29.31.37.79%
2.32.5.13.37.61.(3623) 28.5.7.17.37.43%.61.67 3.5.19.59%.61.67.71.73 —2.61.67.71.73.79.{103)
32.41.61.67.71.73.79.83

47 2.5% —34.11.13.53.59.61.67.71 2.41.59.61.67.71.(179} —7.11.17.29.31.37.41.67.71
—25.7.13.17.37.41.71.79% 2.3.53.37.41.(293) 22.3.72.312.41.73.(173) - 23.33.7.17.73.79.(271)
24.11.29.43.73.79.83 2.13.23.29.43.73.79.83.89

49 2.3.5% —2.29.41.43.59.61.67.73.79 23.19.47%.61.67.73.79 23.13.31.37.43%.67.73.79
2.23.37.73.79.(2243) 2.3.5°.72.13.23.29.71.79 —22.3.19.29.71.(8329) —3.7.17.29.41.71.83.(233)
22.3.13%.41.43.71.83.89 3.23.31.41.43.47.71.83.89

53 3.5% —22.31.47.59.61.67.71.73.83 7.11.23.67.71.73.83.(173) —23.3.17.23.41.43.71.73.83
— 2°.19.37.41.43.83.(571) —2.5.7.13.29.31.41.43.59%.83 32,29.31.43.79.(2917) 2133.17.19.23.31.59%.79
— 3.13.19.79.89.(10 133) 24.3%.7%.11.47.79.89.97 2.3.5.7.17.47.79.89.97.101.103

59 2.5% —2.11.17%.53.67.71.73.79.83.89 22.5.23.71.73.79.83.89.(271) 3.5.7.37.47.79.83.89.(239)
—~23.7.13%.19.37.41.43.47.83.89 — 25.5%.7.43.47.89.(8069) — 22.3.7.29.31.47.(139.239) 2.3.5.73.23.(557.757)

25.5.19.97.(586 471)

— 32.13.892.97.101.103.(239)

2.3.5%.11.53.97.101.103.107.109

2.19.37.53.97.101.103.107.109.113




TABLE VI. Coefficients of nondegenerate I, representations. Same presentation as in Table V.

1372) [ —772) [13/2) [—1772) [23/2) [—27/2)
1 Den [33/2) [—3772) [43/2) [—47/2) [53/2) [—57/72)
7/2 25 7 3
13/2 2.52 13 2.13 -1
1772 2.3.5° 11.17 —-2.7.17 - 13.17 22.13
19/2 2.5¢ 2.3.7.13 22 7 —-31717
2372 2.3.5° —17.23 3.7.17.23 23423 22.19.23 2.7.11.19
25/2 2.3.5° 22.3.11.19 132.19 22.7.17 —2.13%17 - 11.17.23
2772 2.3.58 2.3.5.17.19 235.11.19 —5.11.(29) 5.47) 2.72.23 2.3%.13.23
29/2 2.3.5° —25.17.23 3.5.13.23 -2.5.13.19 0 17%.19 2.32.7.19
312 2.5% 325.13.19 -57 5.312 —3.5.23 3.7.13.23 13.23.29
3372 235 2.3.5.19.23 345.7.23 —27.325.13 2.3%.13.172 3.(89) 213229
—22.11.29.31
3572 23.5 —2.5.23.29 2%.5.7.23.29 5.11.13.29 —23%29 2.3.(109) ~2.3.23231
22.3.11.17.31
39/2 2.5° 5.11.17.23.31 5.31.(43) —2.7.112.13.31 2731 —2.3.11.232.29 —21.7.29
2.3.7%.17.29 —2.17.19.29.37
4172 2.3.5% 2.3.5.19.23.29 — 233257229 22.13.17.29 2.17.(43) —2211.17.31 —3.31.(47)
—2.172.31.37 13.19.31.37
45/2 2.3.5 —325.7.13.29.31 —2.3.29.31.43° 34.7.17.19.31 —227.17%.19 22.11.13%.19 2.32.7.13.19.2%
— 215337 23.132.37.41 2.7.11.37.41.43
5172 235" 223.7.23.29.31.37  2.31.37.(79) —227.11.37.412 —223.7.17.19.37  —19.23%(71) — 357477
—2.3.11.41.(131)  3.41.43(71) 7.23.41.43.47 22.7.23.41.43.47
TABLE VII. Coefficients of component |6 — ) of nondegenerate I, repre-
sentations. Same presentation as in Table V.
f Den o-). [5-) [1o-») [15-)
3 1 1
5 5? -7 2.32
7 5* 243 -7.1
8 1 1
9 53 3211 2.13
10 5? 2217 319
11 5° —23.1113 -23 71719
12 53 2319 —11
14 53 kR D! 2223
16 2.5° 5.13.23 23.7° 3.29.31
TABLE VIII. Coefficients of component |5) of nondegenerate I'; representations. Same presentation as in Table V.
1 Den [2) ) [7) ) [12) [—13)
3 5 3 -2
5 5 3 2
7 22.5° 27 7 11.13
8 22.8° —2.11.13 ~3.13 327 247
9 54 27 ~237 23213 13.17
10 2.5 13.17 ~2%17 —2.132 —-37
1 2.5¢ (23) 2.32.7 2417 —17.19
12 2.5° 17.19 2.3.17.19 —287 7.17% —23.11.23
14 2255 —225.17.19 —3.5.19 —25.7.11 2253 2.3.13.23 —3213.23
16 2.5% 2.5.19.23 —2%5.7.23 —5.13 23.3.5.13 —2%3.132 3.72.29
2451 J. Math. Phys., Vol. 26, No. 10, October 1985
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TABLE IX. Coefficients of degenerate I'; representations up to / = 27.5. Other linear combinations can be found. These are obtained by making some cocfficient of the second representation vanish in order to get the

simplest values.
[ 3/72) [ —772) (13/2) [—1772)
[2372) [-2772) [33/2) [—3772)

) Denominator [43/2) [—47/72) [53/2)

3172 2581392 23.3.5.7.11.17.(107) 5.(139)° 22.7.13.172.23.441) —2.7.11.23.(109)

B= —3.112.17%.23.29 28.32.7.11.23.29.31 -233%,17.23.29.31 —25,17.23.29.31.37

37/2 2355139 —2.3.5.13.23.29.31.37 0 22.32.11.17.29.31.37 23.32,13.17.29.31.37

B=2 —2%3.7.13.17.31.37 — 13.17.37.(71) 2.7°.11.13.37 — 32.7.11.13,(149)

4372 2.3.5".4493 2.3%.5.7°.13.17.19.37 22,3.7.13.17.37.41% 34.37.(4493) 7.29.37.43%(47)

B= 2%.7.13.29.31.37 2°.32.13.17.29.31.37 22.3.7.112.13.17.19.29.31 - 22.7°.17.19.29.31
25.17.19.29.31.41.43

4372 2.57.4493 —225.112.29.31.43 2.3%.19.29.31.43 0 25.13.17.19.31.43

B=2 ~17.19.43.(107) 7%.13%19.43 —2.3.74.37.43 5213%.37.43
7.13.232.37.41

4772 223511727 2.34.13.29.31.37.41.47 2°.7.11.29.31.37.41.47 —2.3.11,19.292.31.37.41.47 3.11.17.19.37.41.47°

B= 22.3.7%.13.19.232.37.41.47 11.13.19.41.47.(521) —3.11.41.47.(3571) 22.37.11.47.{107)
32.43.47.(307) 24.172.23.43.(127)

4772 2°.3.58517.727 —2.3.5%11.19.29° 2°.3.7.13.19.232.29 2.11%.13,(71} — 13.17.232.31.(53)

B=2 22.11.31.(2141) 3.72.232.31.37 13.19.31.37.{229) 22.13.19.232.31.37.41
3.11.13.19.31.37.41.43 0

4972 2.3.5'°.13.67.149 3%.5.23.29.31.37.(61) - 2.7.11.29%.31.37 — 11.19.37.44721) ~223.17.19.37.2797)

B= 2272,19.37.{157) 2.3.13%(67.149) 223211%.132.372.41 —~23.3.11°.41.43.(79)
~ 2.23.37%.41.43.(107) —22.5223.41.43.47.(53)

49/2  2.5'.13.67.149 —2211%.17.19.31.41.43 —253.7.17.19.23.31.41.43 —22.3.17.23.29.41.43.(59) —11.23.29.41.43

B=2 —2235.11.17.23.29.41.43 1] 2.3.13%.17.19.23.29.37.43 - 2°.17.19.23.29.37.(89)
27.3.11%.17.19.29.37 —32.72.11.17.19.29.37.47

53/2  2%.35'.13.1327 —2.7.23%.29.31.37.41.43 2'1.5.7.7.23.31.37.41.43 2.34.5.37.41.43.(163) —5.7.17.19.37.41.43.(293)

B= —245.7.112.41.43,(59) — 5.13.41.43.(79.193) 27.5.7.11.13%,(1327) —5.7.37%.(20507)
22.5.23.47.(16 693) 72.23.47.(10259) 2.3%72,13.17.23.47°.53

53/2  24.35'.13.1327 — 2.29.47.53.(4519) 2°.34.5.47.53.(127) —2.5.7.23.31.47.53.(131) —5%.17.19.23.31.47.53

B=2 2%5.172.23.31.37.41.53 5.7.13.19%.23.31.37.47.53 0 —5.23.31.37.41.43.47.53
22.5.7.17%.31.37.41.43.53 32.7.23%.31.37.41.43.53 —2.7.13.172.31.37.41.43

5572 2.5'.29.401 22.32.31.37.41.(337) —22.3.5.7%.13.37.41.(107) —3.5.13.17.23.37.41.43* —5.13.17.23.37.41.(181)

B= 3.5.23.41.(3203) 2.32.5.23.29%.(401) 2.3%.5.11.13.23.43.(257) 2.5.13%.43.(1013)
—3.5.7.13.19%.43.47 3°.7.13.17.43.47.53* —3.7.17.43.47.53.(151)

55/2  2.3.5'.29.401 3.7.13.17.23.31.43.(71) —5.7%.17.23.43 22.5.7.43.{10 771) 223.5.7°.112.232.43

B=2 225%.7.13%.17.37.43 0 2.3.5.7.11.17.37.41° —2.3.5.7.17.23.37.41.43?
2'2,5.17.23.37.41.47 28.23.37.41.43%.47 22.3%.13.23.37.41.47.53
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TABLE X. Coefficients of component ]6 — ) of degenerate I, representations up to / = 27. See next table.

[0-) [5-) [o—)» [15-)
I Denominator [20-) [25-)
13 54.47.127 (y=1) 271113 17.(73) —25.11.17.19.23
13 5°.47.127 (y=2) 2.17°.19.23 —25.7.11.13.19.23 3#.7.13
15 225711 r=1 —23%57.13.17 345.1L.19 ~2.3.19%23 7.13.19.23.29
15 225511 (y=2) 23.5.17.19.23 3.5.7.11.13.23 2.7.13 3.29.(37)
17 24.3.58 fy=1 325.19.23.29 ~5.11.13.17.23.29 22.3.17.29.441) —2.112.17.31
17 24.3.5° (r=2 —3%5.13.17.19 —5.11.19% 223.13.23 2.13.23.29.31
18 5%.107 (r=1 —2.325.29.31 —3.7.11.29.31 22,(107)
18 107 r=2 ~7.11 2.3.5 0
19 574171 (¥=1) 23.5.7.1117.19.31 ~ 2.3%.5.23.31.(43) —11.132.23.29.31 2.3.7.13%.17.23.29
19 584771 (y=2) 223.5.1923.29° —24.5.7.11.17.29 —2.3*7.17.(79) —3.11.31.(727)
20 587112 24.34.29.31.37 2.11.31.37.(59) 17.37.(563)
y= —27.13.17.19
20 577112 2.32.17.(179) — 11,17.29.(61) 2.29.31.(43)
y=2 22.13.19.29.31.37 '
21 510.7.23.37 2.5.7.11.13°.23.29.31 22.32.17.19.29.31° 3%.13.17.19.(337) 223.11%13.19
y= —22.3237.41.(167)
21 52.7.23.37 —2.3%5.7.11.17.19.23 3%.13.(5813) 24.29.31.(167) —3.17.29.31.{181)
y=2 13.17.19.29.31.37.41
2 510 2.7.13.19.29.31 —347.17.19 2.19.37.(53)
y= 27.13.37.41 o
22 5t 112.29.37 —2%.13.17.31.37 7.13.31
y=2 —327.19.31.41 : ' :
23 25.5%.13.67.71 28.3.5.13.23.37.41 11.19.37.41.(641) —3.72.17.19.29.31.37.41 23.32.11.13.19%.29.31.41
y= —2.3%.11.29.31.43.(47) ~ :
23 2°.3.5'%.11.13.67.73 26.5.7.11.13.19.23.29.31 - 3%.7.29.31(13 109) — 11.17.{107.691) 223.7.112.13.19.37.(71)
y=2 2.7.19.37.41.43.(1759) :
23 24.3.5°.11.13.71.73 —2*5.11.13.17.29.31.43.(53) 3°.17.19°.23.29.31.43 — 7.11.19.23.43,(1741) —2%.3.72.11%.13.17.23.37.43
y=3 2.17.23.372.41.(157)
24 22513 -~ 11132313741 3%.19.37.41 2%.3.11.41.(97)
y= — 2.3.43.(163)
24 235%13 3.132.17%.19.31 11.{2389) 2%.32.19.232.37
=2 —2.11.19.37.41.43
25 34.5'2,72.37.43.67 — 24.3%.23.31.37.43%.(67) 23.5.11%.13.29.31.37.(167) 3%.5.7.112.13.19.29.37.(881) 27.32.5.11.13%,29.(1249)
y= 2.5.13.29.41.43.(41 189) ~25.72.13.192.23.29.41.43.47
25 34.5'1.72.37.43 —2.32.11.13.29.37.432.(61) 5.23.37.(95 273) —2.3.5.7.11.19.23.31.37.(59) 32.5.23.31.(149.313)
y=2 —5.11.23,31.41.43,(317) 2.7% 11.31.41.43.47.(223)
25 3.5%,37.43.67 0 - 22.7.11.19.31.37.41.47 —253.37.413.47 2.34.7.11.19.41.47
y=3 2%.7.19.232.43.47 5°.7.13%.19.23.43
26 3.5%.19.29 2.7.11.23.31%.41 = 227%.19.23.41 —22.3.23.37,(67)
y=1 " ‘ 2.37.43.(157) 5.7%.17.37.4347
26 3.5%.19.29 11.37.43.(233) 2%.19.37.43.(107) 3.77.41.43
y=2 7.23.41.(1091) ~2°5.7.17.23.41.47
27 2.5'.7.47.61.491 27.32.7.13.17.23.29.31.311) 5.17.{1 164 409) 2.5.19.37.(383.1553) —2.3.5.17.37.41.(8209)
y= 26.5.114.17.23.37.41.43.47 — 35.7.11%.13.23.37.41.43.47 ‘ ’
27 512.7.47.59.491 ~7.23.29.31.37.41.(883) —~21132,5.132.37°.41 —~26.3.5.13.17.19.41.(769) —24345.13.(53783)
y=2 2.3.5.13.23.372.43° 47 —2°.3.7.17.23.43.47.0977)
27 5'2.7.47.59.61 —2°3.7.13.29.37°.43 - 2.32.5.23.31.37.43.(149) 22.5.17.19.23.31.43.(8353) — 3.5.23.29%.31.41.43.(83)
y=3 — 2°5.31.41.47.(521) 2.75.13.17.31.41.47
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TABLE XI. Coeflicients of components 13) of degenerate I'; representations up to / = 27. The related 16 ~— } components are given in Table X with the same 7. Some values are obtained by an arbitrary

orthogonalization which leads to simpler results than any of those obtained by creating zeros.

[2) [ -3 [D [ -8
[12) [—-13) n”n [~ 18)
1 Denominator [22) [—23) 27
13 22.55.47.127 —245.11.(137) 5.47.127) 2.35.5.7.17.19 —225.17.19.(101)
y=1 2.11.17.19.23° 32.11.13.17.19.23
13 2.55.47.127 5.7.13.17.19.23 0 —~2.5.11.13.23 —5.7%11.13.23
y=2 . 2.7.13,(113) —227°(719)
15 225511 2.3.5.13 253.5.112 ~357.13%19 2.3.5.7.19.23
y=1 —22.13.19.23 3.7.13.19.23
15 22511 2.5.7.19.23 0 -—5.13.23 2.5.13.17°
y=2 22.3.7.23? -3
17 26358 —1225.17.23.29 3.5.7%.17.23.29 2.3%5.13.17.29 24.13.17.19%.29
y=1 —2.17.(199) 3.17.(281) 211,3%.11.31
17 26354 22513 3.5%.13 234523 - 245223
y=2 2.13.23.29 3.13.23.29 0
18 2.5%.107 —32.5.11.23.29.31 —3.5.7.11.23.29.31 22.3%13.29.31 —3%11.29.31
y= 211131 PR72.11037) 22.3.7.17479) 2.3.7.17.(61)
18 2255107 225,723 —3.523.(71) —2.3%7.11.13.19% 25.7.(151)
y=2 2.3%.7.29.(103) 3.7.29%.31 2°.3.11.17.29.31 —22.3%11.17.29.31
19 258411 345111321731 —2.325.13%31 —22.347.13%23.31 7.23%.31
y= —2.3.11%.132.23.29 3.7.11.192.23.29 132.17.23.29 25.7%.17.23.29.37
19 22.5°.47.71 28.5.7.23.29 2.5.7.11.17.23.29° — 22.11.17.29.(103) —22.32.11.17.29.(163)
y=2 —2%3.7.17.31.37 3.17.31{107) 327.11.31.(601) 2.32.7.11%.31.37
20 225711 —2%3.5.17.23.29.31.37 —2.3.5.17.29.31.37 —22.7°.13.29.31.37 22.32.13%29.31.37
y=1 —2%.11.37.(197) —3.37.(1231) 17.(79.97) 2.3.7211417.19
20 2.557.11% 3.5.23° —23.5(103) —22.527%.13.17 — 32.17.233)
y=2 2%.11.17.29.31 —3%17.29.31 ~29.31.37 0
21 2.5%7.23.37 3.5.13.29.31.(79) —2'1,5,13.19.29.31 2.36.7.17.19.29.31 34.17.19°.31
y=1 2%.3.13.17.19.(179) —243%.13%.19 2%.3%.13.37.(197) 2.3.72.23237°
21 56.7.23.37 23.5.11217.19 32.5.17.{101) —212527.13 22321317229
y=2 —3.29.31.(67) —23.17229.31 17.19.29.31.37 0
2 22512 2.3%5.7°.29.31 —213.7.29.31 —2%.13.17.19.31 24.13°.17.19.31
y= 2.3%7.13%.19 22.19.(827) ~2°.1.13.37.41° ~7.13.37.(139)
—32.11.13.37.41.43
22 251 —2.3.5.13.19.29.37 2.3°.13.19.29.37 —227.17.23%.37 2751737
y=2 2%.13.172.31.37 219,7.13.31.37 2.3%.19.31.(53) 7%.19.31.37%

—7.11.19.31.41.43
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TABLE XI. (Continued ).

1 Denominator

(2
[12)
[22)

[ -3)
[—13)
[—23)

(7
[17)
[27)

[ -8
[—18)

23 27.5'.13.67.71

23 27.3.5".11.13.67.73

23 2%.3.58%.11.13.71.73

24 2°.50.13

24 2°.5%.13

25 2%2.34.510.7%.37.43.67

25 3458.72.37.43

25 22.3.5'1.37.43.67

26 223.5'1.19.29

26 2.3.5'.19.29

27 2.5".7.47.61.491

27 5'2,7.47.59.491

27 2%.5'2.7.47.59.61

~27.3211.13.37.41.(313)
—2.32.13%.19.29.31.37.41
72.29.31.43.(109)
27.3.7.13.19.232.29.31.432
2.3.7.11.13.(10 321)
3%.7.11.19.37.41.43(331)
27.3.13%.17.23.29.31.43
2.3°.72.11.13.17.19.23.43
— 3.11.17.23.37.41.(137)
25.32.29.31.37.41
—2.3.112.13.19.37.41
—23.43473)
25.3.52.11.19.29.31
—2.32.11.13.(149)
—3.11.19.23.37.41.43
~2.13.23.31.37.(36 527)
2.112.13.19.29.412(197)
— 13.19%.23.29.41.43.47.(127)
—25.11.29.37.(761)
11.19.23.31.(109.271)
—25.11.31.41%.43.47
25.7.19.23.29.31.37.41.47
— 227.172.41.47.251)
~24.7.112.19.23.43.(103)
24.7.172.29.31.41
~253.7.11223.37.41
~2223237.43.47
—222329.31.37.43
~2.3.43.(4327)
227.112.132,23.41.47
—2%.11213%.17.23.292.31
28.3.5.13.17.37.(8699)
2.32.5.7.17.23.37°.41.43.47
—3.13.23.31.37.41.(3583)
2.32.5.112.232.41.(59)
—223.5.7.13.23.43.47.(1637)
22.37.43.(83.859)
—2%.3°,5.11%.13.23.31.43.(59)
22,5.7.192.31.372.41.47

3.7.11°.37.41.(149)
2.11.13.19.29°.31.37.41
25.132.23.29.31.43.(137)
19.29.31.(103.3617)
—2.3.77.13.412,(59.83)
25.3.7.11.132.19.23.37.41.43
—7.17.23.29.31.43.(59)
2.3.13.17.19.23.43.(743)
25.3.11.13417.37.41
3.11.29.31.37.41
—2.13.19.41.(73)
27.132.23.43.47
32.19.29.31.(79)

— 23111317237

0

—2%.7.13.31.37.(73.557)
—22.29.(199.27 749)
24.112.13.23.29.312.41.43.47
7.11.23.29.37.(1949)
2.11.13.174.23.31.(59)
2.11.31.41.43.47.(397)
—23.19.29.31.37.413.47
—2275.13.19.41.47
—7.19.23.43(83.103)
—25.3%.7.31.41.(61)
22.3%,13.23.292,37.41
34.72.37.43.47
2.35.23.31.37.43
—24347.13.29°.43

— 32.7.23.41.47.(109)
—223.5.112.17.23.31.(5581)
27.5.112.13.17.37.{1993)

— 227.17.23.37.41.43.47.(401)
—2.325.13%.23.31.37.41
22.3.5.41.(257.1831)
25.3.7.13.23.43.47.(743)
2.3.5.37.43.(39 659)
5.13.23.31.43.(10 177)
2.7.31.41.47.(4457)

3%.11.17.19.29.37°.41
2.3.7.11.29.31.41.(401)

7.17.31(779 981)
2.19.37.(142 903)

19.23.31.43.(3371)
2.7.17.23.37.43.(1013)

- 3.52.7%.11.19.37.41
2351117471

72(157)
—2.19.37.41.(67)

24.11.13.19.29.37.(4007)
23.3.7.11.13.29.413,(173)

—23.19.23%.31.37.(107)
—3.7.23.31.41.(1543)

—7.11.132.37.41.47°
—2.3.11%.17%19.47.(83)

—112.19%.23.41.47%
2.7.11.23.37.43.(109)

— 7.192.37.43.(59)
—215.11.132.41

5.7°.472.(61.491)
2.5.17.37.41.43.(103.197)
37.7.13.23.37.41.43.47.53

0

2437.5.112.13.23%.43
22.7.17.19%.23.43.47.53

0

- 32.5.23.29.31°.41
2.3.7.13.17.31.41.47.53.(89)

243.11%.17.19.29.31.37.41
38,7.11.29.31.(137)

24.32.7.17.(419.601)
—3.19.37.41.(73.2411)

—2432.19°.23.43.(79)
~3.7.17.23.37.41.43.(73)

22.3.11.17.19.37.41
— 32.52.11(173)

—2%34.17.(89)
372172193741

2°,3%.13.19.29.37.(3671)
3.7.11.13.29.41.43.(3701)

22.3°.11.19.23.31.37.(307)
2.3.7.23.31.41.43.(601)

2.3.7.37.41.47.(1693}
24.3.11.19.43.47.(181)

—2.3.17.19.23.41.{103)
23.347.192.23.37.43

2.36.7.17.19.37.43
2°.3%.77.19%41

28.5.112(79 631)
— 25.32.5.17.37.41.43.(83)

—22.3.5.13.17.37.41.(571)
—2.3.5%.13.43.(25 583)

2°5.11%.17.23%.31.37.43
2.32.5%.23.31.41.(1783)




of two components of nondegenerate I, representations.

With Tables V-VIII all representations can be obtained
for integer values or half-integer values of j up to 27 except
for the I', representations from / = 18.5, the I, representa-
tions from / = 18, and the I'; representations from / = 13.
Tables IX-XI give some degenerate I, and I'; representa-
tions which enable any representation for j<27 to be ob-
tained.

Detailed indications concerning the use of such tables
have been given in the previous article. With the I'", represen-
tation for / = 6, one can obtain the I'¢ representations for
Jj =34 and 3, the I', representations forj = 5, 6, and 7, the I'y
representations forj = §, 4, 12, and ¥}, the I's representations
forj=4,5, 6,7, and 8, and the I'; representations for j = },
% 4,4, 15, and Y, using 3jm coefficients of SU(2) an angular
momentum of which is smaller than or equal to 3. Tables of
analytic formulas for Clebsch-Gordan coefficients with an
angular momentum up to 5 are in Ref. 11. A very concise
table of 3jm coefficients with an angular momentum up to 2
can be found in Appendix C of Ref. 12; it is not difficult to
extend it to higher values.

In his book, Butler® chooses to define the second Iy
representation forj = 1 from the product of the I's represen-
tation forj = 7by |s = 4):in the product there are the I'; and
the I', representations, which can be obtained from the I

2458 J. Math. Phys., Vol. 26, No. 10, October 1985

representation for / = 6, which is the parent of this I's repre-
sentation. Similarly, he chooses the second I's representa-
tion for j = 8 in the product of the I'y representation for
Jj =1 and |s =1}): the parent is also the I', representation
with / = 6. The parent of the first 'y representation forj = 1
and the first I' representation for j = 8 is the I'; representa-
tion for / = 10. However, the I'; representations for j = 4f of
the tables are, in fact, I"§ representations, the parents of
which are the I', representations for / = 7 and / = 8, respec-
tively.
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Algebra and physics of the unitary multiplicity-free representations

of SL(4,R)
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The systematics of the multiplicity-free unitary irreducible representations of SL(4,R) are
restudied, and an amended list is presented. An automorphism essential to the physical
application for particles and fields in Minkowski space is described.

l. PHYSICAL APPLICATIONS

Present knowledge about the unitary irreducible repre-
sentations {unirreps) of the SL{n,R) groups is incomplete. In
particular, very little is known about the unirreps of the dou-
ble-covering groups SL(n,R). The cases n = 2,3,4 are impor-
tant in physics.' SL{2,R) and its muitiple coverings appear in
numerous problems such as classical and quantized strings,
projective transformations, integration over random sur-
faces, etc. The case n = 3 has been utilized to classify the
excitations of deformed nuclei and of hadronic states lying
along Regge trajectories. SL(4,R) plays a role in the strong
coupling theory and in various dynamical spectrum generat-
ing algebras. A particularly useful application for any # re-
lates to the representations of diffeomorphisms on n-dimen-
sional manifolds.” These are realized nonlinearly over the
linear representations of the SL{rn,R) subgroups.® Diffeomor-
phisms appear in the theory of gravity, in hydrodynamics
and magnetohydrodynamics, etc. In recent years, with the
realization of the existence of a double covering of the diffeo-
morphisms,* to be represented nonlinearly over SL(4,R) in
the case of space-time, a program was launched, aimed at the

construction of SL(4,R) or even “world” spinors as spinorial
“manifields” and their wave or field equations. These would
appear as a superposition of matter fields, representing, for
instance, phenomenological hadrons with their system of ex-
citations, in special relativity and in the corresponding tran-
sition to three possible versions of general relativity with an
active local invariance group of the tetrad frames (“G-struc-
tures”): (a) the tetrad formulation of Einstein’s theory,® as in
the case of finite spinors {“anholonomic” application of a
local Lorentz invariance), (b) the Einstein-Cartan picture,®
in which the spinor fields in addition supply a spin source
term to Cartan’s {algebraic) torsion equation (nonprogagat-
ing local torsion), and (c) the metric affine picture,” where the
anholonomic invariance is further extended to §(4,R),
with the manifields supplying a shear source term® to the
(algebraic) nonmetricity equation (nonpropagating local
nonmetricity).

Alternatively, dropping the anholonomic treatment al-

* Wolfson Chair Extraordinary in Theoretical Physics.
) Also at the University of Texas, Austin, Texas 78712.
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together, the manifield can be used in two approaches as a
holonomic world spinor: (d) Einstein’s Riemannian general
relativity, and (e) a tentative affine theory,” with propagating
torsion, curvature, and nonmetricity, but where only torsion
or curvature is not confined.

Cases {a)~{c) have recently been resolved through appro-
priate wave equations.'® A tentative gravitational Lagran-
gian has been proposed'’ for case () and a holonomic equa-
tion has been constructed.'? Case (d) has also been recently
resolved.'® All of these require knowledge of the unitary irre-

ducible representations of SL(4,R), or at least of the multi-
plicity-free unirreps {in which any representation of the

maximal compact SO (4) subgroup will appear at most once
in the reduction over that subgroup]. Some such representa-
tions (the *“ladder” class) were constructed in connection
with dynamical groups.'® The first comprehensive study of
the entire system of representations was published by Kihl-
berg.'® This has been followed by further results due to Si-
jacki'® and Borisov.!” The present authors published a sup-
posedly comprehensive catalog of all multiplicity-free
unirreps.’ Unfortunately, some of the representations listed
fail the test of fulfilling the algebraic commutation rela-
tions,'® as was pointed out by Friedman and Sorkin,'? who
published what was purported to be a corrected list. We find,
however, that in as much as Ref. 9 was incorrect through
overlisting, Ref. 19 erred through underlisting. Considering
the importance of the issue, we have now surveyed these
same systematics once again, with more insight and some
hindsight. Hopefully, this article will thus supply a “final”
catalog of the multiplicity-free unirreps of SL(4,R). As for
the rigorous mathematical results, we point out that the uni-
tary duals of GL(3,R) and GL{4,R) have been determined by
Speh.*®

In Sec. II we outline the relations between the SL(4,R),
SL(4,R), and SO(3,3) groups and their maximal compact sub-
groups, we give the relevant commutation relations, and
state the procedure for the construction of all unirreps. In
Sec. III we find the two quotient groups of SO(4) from
which all multiplicity-free unirreps are to be obtained, and
list the corresponding group generator matrix elements. In
Secs. IV and V we discuss the irreducibility and unitarity

properties of the SL(4,R) unirreps. In Sec. VI we exhibit a
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listofall SL(4,R)multiplicity-free unirreps, and make a con-
nection and comments to previous work. Finally, in Sec.
VII, we present a deunitarizing automorphism and make use

of it to lay out a basis for the SL{4,R) field structure.

Il. SL(4,R) GROUP STRUCTURE AND
REPRESENTATIONS

The SL{4,R) group is a 15-parameter noncompact Lie
group. The space of the group parameters is simply connect-

ed. The maximal compact subgroup of this group is SO(4),
the double covering group of the SO(4) group. There is a

four-element center of SL(4,R), which is isomorphic to

Z,® Z,. The factor group of SL(4,R) with respect to a two-
element (diagonal) subgroup Z 4 of Z, ® Z, is isomorphic to
SL{4,R), i.e,

SL(4,R)/Z ¢ ~SL(4,R),

while the factor group of SL(4,R) with respect to the whole
center Z, ® Z, is isomorphic to SO(3,3), i.e.,
SL(4,R)/[Z,® Z,]~S0(3,3).

These relations are summarized by the following diagram of
exact sequences:

1 1
i !

1 — Zg - Z,0Z, —» Z, O |
! i

1 - Z¢ - SL4R) — SL4R — 1.
! !

SO(3,3) SO(3,3)

i |
1 1

The maximal compact subgroups of the groups
SL(4,R), SL(4,R), and SO(3,3) are the groups SO(4)
~SU(2) & SU(2), SO(4)~[SU(2) e SU{2)}/Z 4, and
SO(3) ® SO(3), respectively. The relations between the maxi-
mal compact subgroups are given by the above diagram,
with each group substituted by its maximal compact sub-
group. If j,, /, are the Casimir labels of the SU(2) ® SU(2)
group, then in an arbitrary representation Z, ® Z, is repre-
sented by {1,{ — )*'} ® {1,{ — )*2} and Z § is accordingly rep-
resented by {1,( — )% = ( — )%].

Let Q.,, a,b = 0,1,2,3, be the SL(4,R) generators. The

SL(4,R) commutation relations read

[Qab!ch] = i8be Qud — 182a Qs> (2.1)
where for the structure constants g, one can take the invar-
iant metric tensors: either §,, = (+ 1, + 1, + 1, + 1) with
respect to the SO(4) subgroup or
Map = (+ 1, — 1, — 1, — 1) with respect to the Lorentz sub-
group SO(1,3) of the SL(4,R) group. The metric tensor g,
is SL(4,R) covariant. The antisymmetric part (when g,,
= ) f @y, 1.6, My, = Qopy, form the six Lorentz gener-
ators, while the remaining nine symmetric operators, i.e.,
T,y = Q.s), generate the relativistic (four-dimensional)

ai
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shear transformations. The SL{4,R) commutation relations
are now given by the following relations:

[Mab’ Mcd] = - i(/”ac Mbd ~ Nad Mbc
= Wb Mad + Moq Mac)’
[Mab’ Tcd] = - i(nac de + Naa Tbc

— Mo Tad ~ Noa Tac )’
- i(ﬂac Mbd + Nad Mbc

+ Nbe Mad + Nod Mac)’

We will conduct the study of the multiplicity-free uni-
tary irreducible representations of the SL{4,R) group in the
basis of its maximal compact subgroup SO(4). In this way
one has on one hand an advantage of carrying out a rather
straightforward calculation, and on the other hand, of apply-
ing immediately the most general mathematical theorems on
the completeness of the results, which refer to the case when
the unirreps of a noncompact group are analyzed in the basis

[Tab’ Tcd] =

of its maximal compact subgroup. The SO(4)
~SU(2) ® SU(2) subgroup is generated by
JW=leu My +14T,, JP=leu My —1T,,  (2.3)

where i, j,k = 1,2,3. The remaining nine (noncompact) oper-
ators transform with respect to SU(2) & SU(2) as the compo-
nents of the (1,1) irreducible tensor operator Z. We will write
them in the spherical basis as Z,, g, a, § = 0, 4+ 1. The mini-

mal set of the SL(4,R) commutation relations now reads as
follows:

[JP,J9]=6,,7.'7 pg=12,
[J(i),J(q_) ] =25pq Jo(p)’

[J9.Z, 5] =aZ, g,

[Jg)!za,ﬁ] =Bza,ﬁa

[J9D.Z,5] =2 —ala+ 1))”2Zai1,ﬁ,
[(J2.Zepl =2 —BBL)*Z, g1,
[ZinsnZ oy i ]= = (IO +T).

(2.4)

The remaining commutation relations can be obtained by
making use of the Jacobi identity.

All {multiplicity-free) unirreps of a noncompact group
can be constructed explicitly by the following three-step pro-
cedure, which is based on the work of Harish-Chandra.?!

{1} One determines the matrix elements of the group
generators in the basis of all homogeneous Hilbert spaces
over the maximal compact subgroup and its quotient groups.

(2) One determines all sublattices of the maximal com-
pact subgroup labels that are invariant under the action of
the noncompact operators. Each invariant lattice deter-
mines the basis of the representation invariant Hilbert space.

(3) One determines the constraints on the representation
labels by imposing a condition of Hermiticity on the genera-
tors in each Hilbert space corresponding to the above invar-
iant sublattices, starting with the most general unitary, posi-
tive definite Hilbert space scalar product.
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Hi. MATRIX ELEMENTS OF THE SL(4,R) GENERATORS

Let the group elements & of the maximal compact sub-
group SU(2) ® SU(2) be parametrized by two sets of Euler
angles, i.e.,

k(ay, By Y21 By v2) = ke, By, Vi)kalaz, By, 7).
The first possible homogeneous vector spaces are those de-

fined by the whole SU(2) ® SU(2) group. The complete set of
Wigner’s D function provides a basis, i.e.,

{((zjl + 12/, + 1))1/2Djr:lml (@1, By ?’1)Dj;fzm2 (@2 B 7’2)}:
where ( j,, j) are the SU(2) ® SU(2) Casimir labels. The labels
(n,,n,) determine an additional multiplicity of the ( j,, j,) val-
ues, besides the assumed (2/;, + 1)(2/, + 1) multiplicity corre-
sponding to the (m,m,), |m,|<Jj;, |m,|<j,. Since we are
interested in the multiplicity-free representations, we ought
to confine ourselves in this case to the subspace of this homo-
geneous space with basis vectors

{2 + o + 1)°D,, ( By, ¥1)D% , ( Bos 72)}.
The second possible homogeneous space is defined over the
quotient [SU(2)/U(1)] ® [SU(2)/U(1)], with the correspond-
ing basis given by the vectors

{2 + )2, + 1))1/2D{)lml(ﬁli YD ( By 72)}-

Thus, we recover the multiplicity-free Hilbert subspace of
the first possibility. The third possible homogeneous vector
space is defined over the quotient group [SU(2) SU(2))/
SU(2), where the elements of the “denominator” SU(2) group
are parametrized by the Euler angles |(a,5,7)
= (ay, B1 — B»,). In this case, the Casimir labels j, and j,
are equal mutually, i.e.,j =j, = j,. The Hilbert space basis is
given by the Wigner functions, {(2j + 1)'/?
XD?, . (71 B, ¥2)|B =B, + B,}. Hereby we have listed all
possibilities (with nontrivial maximal compact subgroup la-
bels), and therefore, in order to determine all multiplicity-
free unirreps of the SL(4,R) group, one has to look for solu-
tions in just two homogeneous vector spaces given by
quotient groups of the maximal compact subgroup
SU(2) @ SU(2), with corresponding basis vectors as follows:

[SU(2)/U(1)] @ [SU(2)/U(1)]
~[ ooz )] = {2 + D2z + 1)

m, m,
XD{)',,,I (B 71)ng2(32’ 72)}’
(3.1

and
[SU(2) ® SU(2)]1/SU(2)

- {lmlj m2>] = {2(j + 1)'°D7, .. (¥1, B, ¥2)}.

(3.2)
The SU(2) @ SU(2) group generator matrix elements are
well known, while the matrix elements of the noncompact
generators were determined in Ref. 9, by making use of the
decontraction formula. They agree with the ones obtained in
a general analysis of SL(4,R) unirreps.??
In the basis (3.1) we find

2459 J. Math. Phys., Vol. 26, No. 10, October 1985

Jg) jl ]2> =m, jl j2>’
m; m, m; m,
7@ J1 jz) =m, 21 j2>’
h bk L
Ju > = 1
+ m, m, (Al +1)
_ 1 1/2 jl j2>’
mimx )| SR
i J L
R T
m, m
_ 1 1/2 jl j2 >’
mZ(mzi )) ml mzil
and
(J'I Jz J1 j2>
m; m; i my my

_(_)jf—mi(_)ji—"'i

( Ji 1 J])( J2 1 jz)
X ’ ’
-m a m —m; B m

SV ARVARN A

VVARYARNINY,
= —i( =) + 0 + 1)

X (2 + (2, + )2

Xle, +ie; —3[jilJ1 + 1)

—hlh+ Y+ + ) =i+ 1)])

% (J'i 1 jl) (J'é 1 J'z) ’

0 0 0/\0 0 O

where e = e, + ie,, ,,¢, € R is the SL(4,R) representation
label. The 3-f symbol

-
0 0 0/’
with half-integer entries is to be evaluated by taking the cor-
responding expression for integer entries and continuing it to

the half-integer ones.
In the basis (3.2) we find

m, m, m; m,

(3.3)

ol 7 Yem| 1),
m, m, m, m,
J(l] .] >
* m, m,
=~ D =mm | ),
m+1l m,
J@ J )
* m; m,
= ({j41) — 1/2 J >,
(i + 1) = mym, + 1)) my, myt 1
and
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Za, B

< j’ j >
m; m; m; m,
- g Ji 1
=(=)" (=) ( " )
"‘m‘ CZ ml

/2 R .
X(—m; 8 m)(} HZ 1,
G'HZD = = a2 + 1)@+ 1)
Xles +ie; — 47" + ) =i + 1)])

where e = e, + /e,, e,,e, € R is the SL(4,R ) representation
label.

(3.4)

IV. INVARIANT LATTICES

We will treat separately the above two cases. In the first
case, (3.1) and (3.3), one has a priori a general lattice of all
(J1»J2) points

{(jl’j2)tj1’j2 = 0’5’1’%’2:“' } .

In this case, owing to the 3-/ symbols, the reduced matrix
elements of the noncompact operators vanish if j| =j,
and/or j, = j,. Thus, the most general lattice of the {J, , j,)
points splits into eight sublattices. Since only the four possi-

bilities (j 1,7 3) = (/1 £ 1,/» £ 1) oceur, the (jj, j,) content
of each sublattice is determined by j, + j, (mod 2), j; — j,
{mod 2), and the “minimal” ( j,, f,) value. The eight such lat-
tices we label explicitly as follows (cf. Fig. 1):

L,=L(00), L,=L{i) Lys=L(01)=L(1L0),
L,=L(}3)=LG34), Ls=L({}0), L¢=L(0})
L,=L(03), Lg=L{30).

In order to determine which of these sublattices are invariant
under the action of the noncompact generators, we will

make use of the following explicit forms of the reduced ma-
trix elements:

(i —1h—=UI|Z||jj?

= — i — P+ Be, + iy + jy + il i)
(h+ 1= 1I1Z]| | jij2)
— P ey + tey — jy + 1 — Wi +

(4.1)

1)),
(4.2)

i A
5
Z 6 2 7 6 2 7
2 1 5 3 8 105 3
3 |
2 7 4 6 2 7 4 &
. |
3 8 1 5 3 8 1
1]
7 [ 2 7 4 & 2 7
0 }
— 1l 5 3Bl 5 3 ey
1 3 5 .
0 = 2
3 1oy 2 3 3 Jl

FIG. 1. L, i=1,2,..,8, sublattices [Eq. (4.1)].
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(= 1h+YIZ| | jj)
— P~ Yey + ey + jy — o — WnlJz + 1)V2
It is obvious now that, owing to the ( j,)!/? and/or (j,)'/?
factors in (4.2), the lattices L (0,0) and L (0,1) are invariant,
i.e., the reduced matrix elements (7, — 1 j, — 1| |Z| | /1 /2),
(i +1hp—=1|Z]||jij2),and (j, — 1 + 1| |Z] | ji 42}
vanish at the edge (/,, /,) points (/,,0) and (0, /). Thus we find
two invariant lattices

L{0,0),L(01)=

= —

L{1,0), {4.3)
with the SL(4,R) commutation relations satisfied for every
¢,,¢; € R. Whenever e, 50 these two lattices are irreducible.

In the case of the lattices L (4,0) and L (3,0), the reduced
matrix  elements  {(j,—1j,—1]|Z]||j,/,) and
(ji + 1jo— 1} |Z] |, + j,) vanish for the edge points  j;,0)
but the (j, — 1j,+ 1}1Z]1j,/,) do not vanish for the
points (0, j,). Thus, these lattices are not invariant, and the
algebra commutation relations are not satisfied for arbitrary
¢,e, values. However, one can constrain the representation
labels e;,e, and find invariant sublattices. If we take
er=1—jip jio=Ll3es =0, then (ji—1
J»+ 11121 | j, j») vanish for all points withj, — j, = j,o, and
we thus find the triangularlike infinite irreducible sublattices

L(0,0;jy —j22J10h  J1o=2,4.6,...,

L (3,0;j; —j22j10) 10 = 33535
L(1,0;/y —j22f1oh  Jro=1,3,5,...,

L 3,0/, —j22J10s  J1o0 = 3PpHsee -

In a common notation these lattices read

L (jo,0; /1 — J22Jok

JO i %’1 %’

To satisfy the commutation relations of the SL(4,R) group
for these sublattices it is necessary that e, = 1 — jo,e, = 0.

In the case of the lattices L (0,4) and L (0,3), the reduced
matrix  elements SRS IRVARIN N and
(ji— 1j,+ 11 |Z||j,/») vanish for the edge points (0, j,),
butthe (j, + 1j, — 1| |Z| | j, /») elements do not vanish for
the points {,,0). These lattices are not invariant, and the
algebra commutation relations are not satisfied. In this case
one can again constrain the e,e, labels and find invariant
sublattices. If we take e, = 1 — jg, joo = 4, 1,3,...,.¢, = 0, then
(ji+1j,—1]|Z|1j;j.) vanish for all points with
Ja —J1 =Ja0, and we thus find another set of triangularlike
infinite irreducible sublattices

(4.4)
J1 +j2=jolmod 2).

L(0,0;j; —ji2Jz0h  Jao = 2,4,6,...,
L (0’5]'2 ~J120h Jao= i’g’g""’
L(0,};j; —ji2j20)s  J2o=1,3,5,...,
L (0,%§j2 —N12J20h J2o= %’%’121’--- .
In a common notation these lattices read
L (0, jo; j2 — j12Jo)s
Jo=113 Jji+j=Jjolmod 2).
The SL{4,R) commutation relations are satisfied for the la-

(4.5)
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bels corresponding to the sublattice points provided that
ey =1—je,=0.

Finally, if we take e,=l,e,=0, then both
(Gi—1ap+11Z]|ji2) and (jy+ 1= 1 (2] ]2
vanish for all points on the line j,=j, and
{j1—1ja—1||Z||j,j;) vanishes for j, =j, =0. There-
fore, we find an additional invariant sublattice

L{0,0;/, =j, =j},j=0,1,2,... . The corresponding SL(4,R)
representations are a special case of the representations cor-
responding to the lattices of (4.7).

It is rather straightforward to check in the case of the
L (0,0) and L (1,0) lattices that the sublattices of points
Ji—ja» —1,—2,=3,.. or j, —j;» — 1, — 2, — 3,... split
under the action of the noncompact operators into a lattice
of the form (4.3) or (4.4) plus an additional sublattice, and
that for the latter the positive definiteness of the corrre-
sponding Hilbert space scalar product [determined by (5.3)
and (5.6)] is not satisfied. There are, therefore, no more irre-
ducible invariant sublattices correponding to (3.1) and (3.3).

In the second case, (3.2) and (3.4), one a priori has a half-
line-like lattice of points {(j,, /) = (/, /)] / = 0,},1,3,...}. The
explicit form of the reduced matrix elements (3.4} is given by

G=11Z| )y = = (2 + 1) — 1)) e, + iey + ),
GHZ| ) = — i + 1)(e; + iey)s (4.6)
GHUNZI )y = — (2 + 3)(% + 1) e, + ey —j — 1).

One can see immediately that ( j — 1] |Z | | /) vanishes when
J =1, for every e,,e, and that one has an invariant lattice of
points L (L,}; j; =j, =), j = L3,3,... . The same matrix ele-
ment vanishes for j =0, provided e; = e, = 0. However,
owing to the existence of a nontrivial reduced matrix ele-
ment {j| |Z | |j) in this case, one can explicitly verify that
the SL(4,R) commutation relations are satisfied for e; = 0
and an arbitrary value of e,. Thus in the second case we find
two irreducible invariant lattices for e, € R,
L©O)={(js)lj=0.24,..},
4.7)

V. UNITARITY

The next question we want to discuss is that of the uni-
tarity of the multiplicity-free representations of SL(4,R), or
in other words, the Hermiticity of the corresponding genera-
tors. Since SL(4,R)is a noncompact group, its unitary repre-
sentations are necessarily infinite-dimensional. Unitarityisa
matter which depends on the Hilbert space one is working in,
i.e., it depends on the corresponding scalar product. In order
to obtain all multiplicity-free unirreps of SL(4,R), we start
with the most general scalar product of any two functions f

and g,
£ ]

(fg)= f dk" dk Wik gk ), (5.1)

wherex(k ',k )isascalar productkernel, k,k ' € SU(2) ® SU(2),
and dk is an invariant SU(2) @ SU(2) measure. We have
shown in Ref. 9 that for the most general multiplicity-free

SL(4,R) representation, the noncompact operator matrix
elements take on the following form:

(1‘: B, i jz)
m; m; m, m,

a, B
RN ¥ [
= &{j1,J2) , ,
m; m,

o B {5.2)

i1 j2>
m; m, ’

where «(j;, j,) are the matrix elements of the kernel. The
positive definiteness of the scalar product, i.e., (£, f)> 0 for
every fyields

k{J1J2)>0, (5.3)
and the Hermiticity of the scalar product, ie., (fLe=(81)*
implies

k{Jv J2) = &*(j1s J2)- (5.4)
The Hermiticity of the noncompact operators reads in the
spherical basis as follows:

Zio=(=)V"PZ_, s (5.5)

Making use of this condition, and of (3.3} and (5.4), we arrive
at
(e +ie, —4[ /1(y + ) —jlh + 1)

+ AU + 1) = jalda + V]l 15)

=(—e +ie,—4[il/i + 1) =il +1)

+J3(Jz + 1) =il Jp + V] J2)- (5.6)

This equation provides us with two cases, i.e.,e; =0,¢, € R
and e;#0, e, =0.

It is at this stage that we inspect the unitarity of the
representations, as well as the positive definiteness of the
scalar product, for each of the irreducible sublattices found
in the above, (4.3}-{4.5) and (4.7).

The SL(4,R) representations corresponding to the in-
variant lattices L (0,0} and L (1,0) of (4.3), are already unitary
with a trivial kernel for the scalar product, «{j,, j,) = 1 for
every ji,j,, provided e, =0, e,€R. These unirreps of
SL(4,R) form the principal series, which we denote by
D (0,0;e;,) and D P"(1.0;e,). In the case ¢,#0, e, = 0, from
{5.3) and (5.6), we find that there is a solution for e if

les <1 —|ji—j| and e <2 +j; +) (5.7)
for every (J,, /,) point of a given lattice. We find by inspection
that 0 < |e,| < 1 for the lattice L (0,0), and that there are no
solutions for the lattice L {1,0). These unirreps form the sup-
plementary series, and we denote them by D*P?(0,0;e,). The
matrix elements of the kernel are now

'iji+p+e+ W (1—e)l(ji—j +e +2(2—e)
Fijy+i—ei+ W (1+e) (|jy—j| —e+ 22 +e)

wljis Jo) = «(0,0). (5.8)
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For the SL(4,R) representations corresponding to the
irreducible lattices of (4.4) and (4.5) to be unitary, a nontrivial
kernel is required for the scalar product. The unitarity con-
dition (5.6) can then be satisfied for any e, =1—j,,,
jio=513,..., or e, =1 — jug, jao =4,1,3,..., and e, =0, and
that the positive definiteness condition is also satisfied by the
scalar product. The corresponding unirreps form the dis-
crete series of multiplicity-free unirreps of the SL(4,R)
group. We denote them by D%*°(1 —e,0), and by
D*(0,1 —e,), ¢, =10, — 4, — 1,..., and they correspond,
respectively, to the irreducible lattices of (4.4) and (4.5). For
the discrete series, (5.6) yields

(jy+ja+e+ V(1 —j| + e +2)

L(jy+j,—e + U(| ji — 72 _“"1 +2)

X k(min( j,),min( j5)), (5.9)

where x(min( /,),min( j,)) is either «(1 — e,,0) or (0,1 — ¢,).
The SL(4,R) representations corresponding to the irre-

ducible lattices L (0) and L (}) of (4.7) are, as we have already
stated, unitary for e, = 0 and an arbitrary e, € R. This result
follows from an explicit verification of the SL(4,R) commu-
tation relations. These representations form the ladder unir-
reps, and we denote them by D'*%¢(0,e,) and D% (L;e,).

The irreducibility of the Hilbert spaces in which we have
defined the multiplicity-free unirreps of SL(4,R) is guaran-
teed by construction—none of them possesses an invariant
subspace under the action of the group generators.

The second-order Casimir operator for SL(4,R) is de-
fined by

K(j1sJo) =

C,=0,0"=—4+ ey + ie,). (5.10)
For the principal and the ladder series it is given by
C=—4—1e, (5.11)

while for the supplementary and the discrete series it takes,
respectively, the values
C,= —4+1e (5.12)
and
Co= —4+id—>—4+40jo— 17

where jo = 1,1,3,2,... is either j,, or j.

(5.13)

V. SUMMARY OF SL(4,R) MULTIPLICITY-FREE
UNIRREPS

We have parametrized, in this work, the unitary irredu-

cible representations of the SL(4,R) group in terms of the
parameter e = e, + ie,. The representations are defined in
Hilbert spaces which are symmetric homogeneous spaces
over certain quotient groups K ' of the maximal compact sub-
group K = SU(2) ® SU(2), i.e., in the spaces L *(K ') of square-
integrable functions over K’ with respect to the invariant
measure over K '. We have considered the most general sca-
lar product (5.1) of the Hilbert space elements with, in gen-
eral, a nontrivial kernel x. The K ' representation eigenvector
labels, which define a basis of the SL(4,R) representation
Hilbert space, are constrained to belong to certain irreduci-
ble lattices L. Therefore, we denote the unirrep Hilbert
spaces by H (K '«,L ).
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There are, besides the trivial representation, four series

of multiplicity-free unirreps of the SL(4,R) group.

Principal series: DP"(0,0;e;) and D" (1,0;e,), ¢, =0,
e, € R. They are defined in the Hilbert spaces H (K ',,x,L ),
where K| =[SUQ2)/U(1)]®[SUQ2)/UN), «{jnj)=1,
¥ ji» 2, and the irreducible lattices are, respectively, L (0,0)
and L (1,0) [cf. (4.3)]. The generator matrix elements are giv-
en by (3.3), and the Casimir invariant is given by (5.11).

Supplementary series: D*P(0,0;e,), 0 < |e;| < 1, ¢, =0.
They are defined in the Hilbert spaces H (K {,x,L ), where
K { =[SU{2)/U(1)] & [SU{2)/U(1}], «{ j,, j,) is nontrivial and
given by (5.8), and the irreducible lattice is L (0,0) [cf. (4.3)].
The generator matrix elements are given by (3.3) and (5.2),
and the Casimir invariant is given by (5.12).

Discrete series: DU*(1 —e,,0) and D¥°(0,1 —e,),
e, = 1 —jo. jo = L,1,3,e, = 0. They are defined in the Hilbert
spaces H(K{.,L), where K| =[SU(2)/U(1)] ® [SU(2)/
U(1)), #(J,» j,) is nontrivial and given by (5.9), and the irredu-
cible lattices are, respectively, L (jo,0;7, —j,>/,) and
L (0, jo; J2 —J12jo) [cf. (4.4) and (4.5)]. The generator matrix
elements are given by (3.3) and (5.2), and the Casimir invar-
iant is given by (5.13).

Ladder series: D'** (0;e,) and D'** (L;e,), e, = 0, e, € R.
They are defined in the Hilbert spaces H (K} ,«,L ), where
K ; = [SU(2) @ SU(2))/SU(2), «(j1, /o) = «(j, /) =1, Vj, and
the irreducible lattices are, respectively, L (0) and L (}) [cf.
(4.7)]. The generator matrix elements are given by (3.4), and
the Casimir invariant is given by (5.11).

Let us comment briefly on the previous work on

SL(4,R) multiplicity-free unirreps. The ladder series, with
e, = 0, were obtained by Dothan and Ne’eman,’* and in this
work e, was constrained by the algebraic structure of the
physical model they considered. The general ladder series,
e, 70, were obtained by Mukunda,* by means of an analytic
continuation in the SU(4) labels, and by Sijacki,'® who solved
the commutation relations explicitly. Kihlberg'’ failed to
check the SL(4,R) commutation relations in the multiplic-

ity-free case, when continuing the SO(4) labels to the half-
integer values; in addition he did not consider the homogen-
eous space over the X'; group and thus obtained only the
e, = 0 ladder unirreps. Friedman and Sorkin'® realized the
importance of checking the commutation relations for the
continued values (or equivalently checking whether the rel-
evant sublattices are invariant), and made an attempt to find
all multiplicity-free unirreps. However, they did not actually
solve their relevant equations (A.6)—(A.17): instead, they
made use of our result>'® according to which only
(hx 121 |Z]jjp)and (y £ 1 F 1] |Z] | jij,) ma-
trix elements are nonzero; unfortunately, this result only
holds in the Hilbert space over the K] group. The
(jjl |1Z| | jJj) matrix elements are indeed nonzero (and pro-
portional to e,) for the Hilbert space over the K} group.
When embedding a Hilbert space over K} into a Hilbert
space over K|, in order to prevent nonvanishing
(j+1jF 1| |Z]| |jj) matrix elements, e, = O is required,
and thus only the D'#3? ¢, = O unirreps survive. The supple-
mentary unirreps were altogether missed in their work as
well.
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The SL{4,R) multiplicity-free representation labels
used in previous work are given in terms of the labels of this
work by R = e, (Ref. 23), 7 = e, (Ref. 16), (a,,a,) = (e, — €;)
(Ref. 15), (py, po)=(—e;, —e,) (Refs. 9 and 18), and
k= — 4, + ie,)* (Ref. 19).

Vii. THE DEUNITARIZING AUTOMORPHISM .«

The SL(4,R) generators M,,, T, a,b = 0,1,2,3 of (2.2)
can be rearranged according to the following set: J,
=deuMy, N, =Ty, K, =My, T;Tu where
i,j = 1,2,3. The SL(4,R) commutation relations now read
[ Ji;] = tegdis
[VisN; ] = €Ny,
[Vi. K] = i€y Ky,
[NoN; ] = i€
[KiK;] = —ieudis
[Tl =it€uTy + i€sq Ty,
[JnToo } =0,

(7.1)

[TyTu] = — i0u€im + 8u€m + Sic€itm + O1€itmMoms
[Ki’Ni] = i(Tij + 6ijT00)’
[KoTp] = —il6;N, + 84 N;),
[NisTi ] = — il6;K + 84K)),
[K,To] = — 2iN,
[NiTo] = — 2K,
[7)Tw] =0.

The compact operators are J; and N,, while the remaining
ones K;, T;; and T, are noncompact. Note the following
subgroups:

SO(4) JiV;,
SO(1,3)~SL(2,C) J..K:, (7.2)
§—I:(3aR) ‘Il ’ Tlij .

The commutation relations (6.1} are invariant under the
automorphism
Ji—Jy,
N,—iK;,
o K,—iN,, {7.3)
Tij “"Tij
To5—>T 00

As a result of this automorphism, the vector spaces car-
rying unirreps of SL(4,R) can also realize the action of

SL(4,R)_, , except that some of the latter group’s matrices
will not be unitary, having been multiplied by v — 1 in (7.3).
This is essential for most physical applications. Indeed, ordi-
nary tensor fields carry finite nonunitary representations of
SL(4,R), and Dirac or Bargmann—Wigner spinor fields carry
finite nonunitary representations of SL(2,C)C SL(4,R). In
both cases, the physical generators of Lorentz transforma-
tions—the boosts—are entirely orbital. This can be seen in
the following way.
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The Noether theorem determines the following struc-
ture for the total angular momentum:

M, = f (04" — 5,0, + S oo, +hic  (14)

where h.c. denotes the Hermitian conjugate expression, o, is
a spacelike hyperplane,

9.7
d0, 8)
is the canonical energy-momentum tensor, .¢ is the Lagran-

gian density, ¢ thefield, S,, “ is the intrinsic spin tensor den-
sity

6, =e L —

d. ¢ ' (7.5)

8L

90, ¢)
and S, is the matrix representation of M, on the ¢ vector
space. These matrices are unitary for the S;;, which belong to
the compact subgroup SO(3); they represent the J;; in Eq.
(2.3),

Jy =€+ TP (7.7)
The S;, on the other hand, represent the noncompact spe-
cial Lorentz transformation generators K;. In any finite-di-
mensional representation of SL(4,R) or SL(2,C), they are
given by anti-Hermitian matrices. For example, in the four-

dimensional defining representation, they are given by the
real symmetric matrices £, + Eg, where

“
ab

Sas ¢ (7.6)

(Emn )g = 61:: 6Bn

(4,B are the row and column indices).

The first bracket in the expression (7.4) for M, is the
orbital angular momentum, the second is the spin. As a re-
sult of the addition of (S,,)*, the M; indeed contain both
orbital and spin angular momentum, but the intrinsic spin
piece cancels in M ;. The physical boost for all known phys-
ical fields is entirely orbital and contributes to the kinetic
energy only.

In unitary representations of SL(4,R), the boost pos-
sesses a nonvanishing intrinsic piece and raises the mass or
potential energy, connecting the particle to a higher excited
state. To avoid this unphysical result, we identify the phys-
ical generators instead in SL(4,R),, . Here M & is given by
the finite non-Hermitian matrices of (iT;). It is this deuni-
tarizing automorphism which allowed the authors in Refs. 9
and 12 to claim that the SO(4) compact subgroup matrices
can be used for the Lorentz SO(1,3). In Ref. 10, both possi-
bilities were investigated, the unitary SL(4,R) case repre-
senting hypothetical particles obeying a Majorana-like equa-
tion. Note that the | — 1 in the automorphism can also be
absorbed in the space-time manifold, with x* = ix° This is
the “Pauli metric” in which the metric is indeed Euclidean
and thus SO(1,3)— SO(4).

In the general affine® approach to particle physics and
gravity, the fundamental symmetry is that of the GA(4,R)
group. In studying the unirreps of this group in the space of
quantum states we have found that for hadrons, SL(3,R)(see
Refs. 18 and 24) is the relevant “little group,” from which
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one induces the GA (4,R) unirreps. This stability group has
to be represented unitarily, since its states form a basis of the
quantum mechanical Hilbert space. In the GA (4,R) repre-
sentations on fields, the SL(4,R) homogeneous subgroup is
actively realized in the space of the field components, and its
representations thus define the general affine fields. The two
pictures have to merge for the stability subgroup, so that the
SL(3,R)C SL(4,R), when represented on fields, has to be
unitary. This SL(3,R) is generated by the J; and T};, and we
observe that these operators are indeed unaffected by the
deunitarizing automorphism (7.3).
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Character constraints on duality
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Duality identifies recoupling coefficients and isoscalar factors of the unitary groups with matrix
elements of double coset representatives of the symmetric groups. When the double coset
factorization is with respect to the same subgroup chain the matrix is that of the ordinary
irreducible representation in a basis symmetry adapted to the subgroup chain. The invariant
character of the symmetric group element then acts as a constraint on the magnitude, phase, and
multiplicity resolution for diagonal elements. An algorithm for determining the content of this
constraint is given and is shown to be consistent with a phase convention proposed previously.

. DUALITY

In Ref. 1 (hereafter referred to as I} we have extensively
analyzed the duality which exists between tensor representa-
tions of the general linear groups GlnC and the ordinary
irreducible representations (irreps) of the symmetric groups
S, using double coset (DC) decompositions S, \S. /S,
Duality identifies 9-/ recoupling coefficients and isoscalar
factors of Un with double coset matrix elements (DCME]
and weighted double coset matrix elements (WDCME] in
S, . The DCME are elements of the transformation matrix
between equivalent bases symmetry-adapted to the two sub-
group chains. When the subgroups are identical (L = L;)
the DCME form the irreducible representation matrix of the
group element chosen to represent the DC. In these cases the
invariant character of the element in S, provides an addi-
tional constraint on the magnitudes and phases of diagonal
DCME. In I we argue duality may be applied directly to the
unimodular SUn subgroups if appropriate conventions for
phase and multiplicity resolutions are observed. For the
phase convention proposed in I character theory also implies
constraints on the resolution of multiplicities involved in the
DCME. This work analyzes these constraints and gives an
algorithm distinguishing diagonal and off-diagonal resolu-
tions of multiplicities for outer products of the type (:4,%).

In the next section we introduce notation by restating
the problem in terms used in I. The character as evaluated by
Nakayama’s formula is related to its expression in terms of
DCME and an algorithm for distinguishing the multiplic-
ities is given. In the final section two sum formulas for diag-
onal DCME, which derive from the identifications of duali-
ty, are noted.

Il. DCME EXPRESSION FOR THE CHARACTER

The DC for the decomposition S; \S, /S 1, are enumer-
ated by sets ;. L; of non-negative integers, which in the array

o 2]
L L
sum to the left column and to the top row. Because of back-
coupling relations there is no loss in generality in limiting the
range of indices / and j to 2 nor in setting ,L, = 0. The DC
representative element is chosen as that permutation that

cyclically permutes the ordered sets {,L, + ,L,) sequentially
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L, times. The DCME are labeled by arrays

A iij i,

£
ro

where the A ’s label irreps of the respective subgroups. The
irreps in any row or column must couple as outer products
and the indices 7 label the multiplicities |4:4; | of these outer
products. The DCME are orthogonal on the sets
(' A;r|rd;r;), with A and ;A; acting as fixed parameters. For
(L = L, and setting ,L, = 0 we consider DCME of the form

T Y

A 1'11 )bz s
rl sl

representing a DC element with cycle structure (252,15,
The trace of this element gives the character as

A A A
A Ay Ayl s
AR 1E) = Ad AL R A 1
)‘j‘le il }i i 2§/{2 /{2 0 ( }
rs r s

The backcoupling relations give the equivalent sums

€ A, A \r
A, 0O A
AQRE TR = VRRVIRRVIC YN 2
{ ) a;.rh NRZARZES 15/{2 i, 0

r

= LA e d,] e2").

€4,
DCME of the form
A Ay A
A, 0 4,
r/

are transposition phases orthogonal and symmetric in the
multiplicities ('|r). In I we have argued transposition phase
matrices may be put in the form of a permutation matrix {one
unit + 1inany row or column} times a phase ¢ (1:4,4,} inde-
pendent of the multiplicity and specified by a convention
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based on the Littlewood-Richardson rules for decomposing
an outer product into its irreducible constituents. That is,
under transposition the multiplicities either map to them-
selves and thus contribute to the trace or they are off-diag-
onal in pairs and do not contribute to the trace. Diagonaliza-
tion of the transposition matrix gives + 1 eigenvalues for
each multiplicity pairing and corresponds to using the
wreath product S,; /S,¥ (S, )? in the subgroup chain. The
paired multiplicities separate into symmetric and antisym-
metric species. This determines, along with the phase ¢, the
resolution of the symmetrized multiplicities |1:4, ® 0],
where o = [2] or [1?]. To show that the character constraint
is not trivial we cite two examples: [3,2,1](2*) = O requires
13,2,1):[2,11 e [2]} = 1 = |[3,2,1}:[2,1] ® [17]}, while
[4%,2%](2°) = + 80 requires |[4%,2°}:[3,2,1]®[2]| =2 and
[[4%,27]:[3,2,1] @ [1?]| = 0.

It is therefore reasonable to ask what are the conditions
which must be satisfied for an irrep with |1:4,%| #0 to contri-
bute to the sum for the character and as a corollary require
the multiplicity to be resolved in diagonal or off-diagonal
form.

ill. CHARACTER VIA NAKAYAMA’S FORMULA

The evaluation of the ordinary irreducible characters of
the symmetric group is a widely studied subject and several
iterative procedures are well known. We proceed using Na-
kayama’s formula as applied to an element containing a ¢-
cycleb times. James and Kerber” give an excellent presenta-
tion of this subject and it is the relevant portions of their Sec.
2.7 we give here. At the close of this section we relate this
procedure to the DC decompositions introduced above.

In a manner similar to Eq. (1), Nakayama’s formula ex-
pands the irreducible characters of S, in terms of subtraces
of a subgroup sequence adapted to the element being consid-
ered. For an element with b g-cycles the Nakayama formula
becomes

Algm) =sgn o f gl (m),
where
AFL and A +(L — gb). 2)

The element 7 is a permutation acting on the set (L — gb)
fixed by ¢°. The phase sgn o and the dimension f*(q) are
discussed below. An irrep A has a unique g-core, g-quotient,
and g-weight w such that if b > w the character vanishes and
if b =w, A is the g-core and f*(g) is the dimension of the
representation induced by the g-quotient. These entities are
evaluated as follows.

Expand A in its row determinatal form 4 = |[/;, — i + j]|
=|[B;]| so that B; >B; , ,; and B; <B; ;. A column se-
quence B, 1<i<j, withB; , ; <Oiscalled a B-sequence for 4.
The Nakayama formula involves the sequential stripping of
g-rims from the A frame. Eachg-rim removal corresponds to
the reduction of a suitable £, in a S-sequence to 8, —gq.
Examination of the determinantal form shows that if and
only if 0<B; — g+#8,; for all i#k will the resulting reduced
B-sequence (perhaps reordered) be itself a S-sequence giving
a nonvanishing contribution to the character. These condi-
tions are conveniently recorded in graphic form on a g-col-
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umned abacus as introduced by James. The columns 0 to
g — 1 classify the S-elements by their value modulo g. A -
sequence is recorded by placing a bead in each position 3,
when the positions are numbered in natural order starting
with zero in the upper left-hand corner and proceeding left to
right and downward. Nonvanishing g-rim removals then
correspond to any possible move of one bead upward one
position in a fixed column. Moving all beads to the upper-
most positions gives the S-sequence determing the g-core A.
The number of unit moves in each column is the column g-
weight w'”? with the g-weight being the total number of
moves w = Zw'. The initial bead sequence in a fixed col-
umn determines a B-sequence for an irrep A Y | w'? . The di-
rect product of these irreps A ¥ forms the g-quotient of A with
induced dimension

g =( oon)® 120 g

The phase is determined by numbering the beads in natural
ordering in their initial position and comparing this to the
beads numbered in natural order in the g-core positions. The
parity of the premutation o necessary to bring these two
orderings to coincidence determines the phase sgn ¢. Before
proceeding we illustrate the above for ¢ = 3 and

(41 51 (61 [7]
(31 [41 [5]1 [e]
[or 11 [21 3]
@ [o] [1]1 [2]

w
WO L.

A=[4222] =

with SB-sequence {7,6,3,2) graphed as
1

A9 [17) [21 (0]
with three-core

2 4 1 1 2 4 3

3 . =01 and "“(3 12 4)
so that [4%,2%](3*) = — (}) = — 6. Thus for b > w the char-
acter must vanish and Eq. {2} is established for b = w. To
extend this result for b <w and relate it to the DC decompo-
sition let us examine more closely the procedure for ¢ = 2.

Each bead move corresponds to removing a segment [2]
or [1?] from the preceding frame A. That is the skew dia-
grams A /[2] and A /[1?] contain common constituents in
which separate (unsymmetrized) modes are removed from
distinct rows and columns. Because of the sign change these
constituents cancel and do not contribute to the Nakayama
formula. The abacus structure counts only those constitu-
ents of 4 /[2] that correspond to the removal of symmetrized
nodes and analogously antisymmetrized nodes in A /[1%]. In
the abacus structure a move in which the immediately pre-
ceding position in the other row is occupied by a bead re-
quires a reordering of the bead numbering to be a S-se-
quence. The transposition of rows in the determinantal form
results in a { — 1) phase factor and the move corresponds to
removing an antisymmetrized segment [1°] from the A-
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frame. A move requiring no reordering to obtain a [S-se-
quence corresponds to removing the symmetrized segment
[2] from the A-frame. The permutation o gives the cummula-
tive number of transpositions in ordering necessary to reach
the two-core numbered in natural order. The irreps A © de-
termine the symmetry of the sequences of moves within a
given column by which the two-core positions can be
reached. The decomposition of the outer product induced by
the two-quotient then determines the symmetries of the se-
quences of all moves within all columns by which the two core
can be reached. It follows for L, = w, the necessary and suffi-
cient condition for the diagonal element

A A Al
Ay AL Ay ls
A, A, O

r s

to be nonzero is that A, be contained in the induction from
the two-quotient of A and 4, be the two-core of A. For fixed
i4; these elements contribute to the character in proportion
to the multiplicity |A,:4 ©4 '), where A ©A " is the two-quo-
tient of A. Illustrative examples are given in Table I.

Extension to the case b < w proceeds in the same manner
except one does not continue to reduce to the two-core but
must sum over all intermediate diagrams related to irreps u
within w — b moves of the two-core. Each intermediate dia-
gram itself has a two-quotient £ @u'” such that A, must occur
in the induction (4 @/u?)A V/u'’), which dimension deter-
mines f* (g) in the sum

Alg°m) =Y sgn o, fHqulm). (4)

M
The phase sgn o, is that necessary to change the bead num-
bering in the pattern corresponding toA to the natural order
for the pattern corresponding to . We illustrate by calculat-
ing the character [4,3,1] (2%, 1%%) via Eq. (4) and list the
results in Table II. Extension to ¢ > 2 proceeds in the same
manner.

1V. DIAGONAL DCME AND DUALITY

Because of the identifications due to duality other sums
involving the diagonal DCME can be obtained. The identifi-

cation of the DCME as a recoupling coefficient of Un re-
quires

A A A
A A A n
AZMM n A, A, Al (A lADa (A2dn s (5)
rr r oK
where (4 ), is the dimension of the irrep A in Un. Given the
irreps ,A4,, »4,, and |4, the dimension # may be chosen arbi-
trarily ~ within  the  range Mty + 200
>Max(,n,,,n,,,n,), where ;n; is the number of rows in the
frame ;4;.

Similarly the DCME of the decomposition S . \S,. /S,
can be identified with DCME of the decomposition
U, n\Un/Un; for suitably chosen ;n and ;. A DC represen-
tative specified by

simply interchanges the distinct dimensions 71,47, S0 in
the defining irrep it has the simple block matrix form

E, 0 0 0
o o E, 0
o E, 0 o |

2

0 0 0 E

22
where E, is the unit matrix of dimension »#. The character of
this element in U is given by

(AT, — 1)

= z (A1) (A2 n (A2
Ay
A A Ay jr
Ay A A
X . 6
Ay A Al h N
r r, r,

It is convenient to use the Frobenius—Schur formula relating
charactersin Gln and S, inthe form 2, 4 (u){A }{€) = S, (e).

TABLE 1. Evaluation of two-cores, two-quotients, and constraints on multiplicity.

Irrep Trace Two-core Two-quotient  Multiplicity resolution
AF2L A(2Y) A AO4M o assumes values [2] and [1?]
[3,2,1] -0 [3,2,1] {oj[0] |A:[2,1}@a]| =1
[4,2,1%] -6 (0] [17][2] I4:3,1]e [1%]] = 1 =14:[2,1%] @ [17]]
[32] —6 (0] (17121 [4:[3,1] @ [17] = 1= [4:[2,1] o [1°]]
[4,3,1] -2 (0] [2%1{0] |42 o [17]] =1 =|A:3,1]® 0]
[5.3.2] —-10 [0] [17113] 4 11e [l = 1= |:[B.17] e [17])] = |4:3,2] 9 0|
[43,231] -5 (0] [2°]{0] A2 17 = 1 = |43, 1" @ o] = 4:12% P 0 0], |A4:[3,2, 1] 9 0] = 2
[4%,27] + 80 [o] [2,1][2,1] |44, @ [2]] = 1{4,|[4.2].[3,1°],[2°].[3%),[4,1%],[2%, 171}, |A:[3,2,1] @ [2]]| = 2
[6,5,3,2] — 140 [0] [13[3%] A4 @17 = 1 = |43 e [17]], |4:[4,3,1] @ [2]| = 2, |A:[4,3, 1] [1?]| =3
{42,11 [3,1] [3] (4211 A [2,1}
[42,1] +1 (1] [31{0] { } [ ! ]
3 31 MM Blf{=+13 4 (11 [21]| =0
f
or element @0 31 131 (0] (211 (211 (0]
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TABLE IL Characters of [4,3,1] (2%, 15-2),

k u wo A©/fr Character

4 [0] (0] 27 -2

3 2] {11 [2,1] -2

2 4 2] 2] - 1} 2
211 17 (17 +3

1 “1q R [ +10

*(A M/u™) = [0] for all entries

The power sum S,(¢) for u L with cycle structure
u=@®,k)™ for an element with eigenvalues
{€) = (€),€,.-.€,) in the defining irrep is defined as
S, (€)= & ,S.(e)™ with S, (€) = Z¢,*. For our purposes we
may choose ,n, = 0= ,L,. Substituting the character for-
mulas in terms of DCME we obtain the sum relation

A A ALl

Zm;m;lj; fé‘ N
r s
A A, A or
X () e b, j; j i
r S
=n ny" (7)
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We also wish to point out the character of the DC represen-
tative

in Un can be evaluated by imbedding Un/S,, in the natural
way’> such that the defining irrep subduces as
{1}, =[n] + [» — 1,1]. Taking symmetrized powers on
both sides we have {1},1=(n]+[rn— 1,1])C
= 2. [n — 1,1J(OA /[k ], where () indicates the inner pleth-
ysm (symmetrized inner product in S, ) and A /[k] ranges
over all skew diagrams resulting from all possible one-rowed
deletions. Since the DC representative is also an element of
S,, one can evaluate the character of the class (2",1'™ ) over
the representations subducedin S, by {4 }|. This has limited
utility, however, because the inner plethysms are difficult to
evaluate except for some special cases.

'3. J. Sullivan, J. Math Phys. 24, 424 (1983).

2G. James and A. Kerber, The Representation Theory of the Symmetric
Group, Vol. 16, Encyclopedia of Mathematics and its Applications (Ad-
dison-Wesley, Reading, MA, 1981).

3P. H. Butler and R. C. King, J. Math. Phys. 14, 1176 (1973).
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Nonlinear evolution equations associated with a Riemann-Hilbert scattering

problem

A. Degasperis,® P. M. Santini,® and M. J. Ablowitz
Department of Mathematics and Computer Science, Clarkson University, Potsdam, New York 13676

(Received 7 January 1985; accepted for publication 29 March 1985)

In an earlier paper nonlinear evolution equations associated with a Riemann—Hilbert scattering
problem, which reduces, in an appropriate limit, to the Zakharov—Shabat—AKNS scattering
problem, were considered. Here we discuss certain necessary constraints associated with the
scattering problem and their impact upon the associated evolution equations. Moreover, the
direct linearization of the nonlinear evolution equations and an algorithm to construct an

N-soliton solution are given.

I. INTRODUCTION

The inverse spectral (or scattering) transform (IST)
method is a well-established technique to solve and investi-
gate certain nonlinear partial differential equations of evolu-
tion type, a number of which are physically relevant.'

Attention has been recently given to the intermediate
long wave (ILW) equation®~ because it brings into the field
some novelty; that is, it is an integrodifferential, rather than
purely differential, nonlinear equation, that is, integrable via

.a spectral problem based on a differential Riemann—Hilbert
(RH) boundary value problem rather than an ordinary dif-
ferential equation. Moreover, the ILW equation depends on
a parameter which we call %, in such a way as to coincide, as
7 vanishes, with the Korteweg—de Vries (KdV) equation,®
and, as 7 goes to infinity, with the Benjamin—Ono equa-
tion.>"!

In analogy with the well-known connection between the
Korteweg—de Vries equation and the modified Korteweg—
de Vries equation, a modified ILW equation (whose 7p—0
limit is the modified KdV equation) has also been introduced
and investigated.'*'?

Further progress in this direction has been made by
extending'* the class of intermediate-type long-wave equa-
tions, and by introducing'®'® an intermediate version of the
Kadomtsev—Petviashvili equation'’ (whose 7—0 limit is of
course the Kadomtsev-Petviashvili equation).

More recently,’® a class of matrix nonlinear integral
evolution equations was generated through the following
2 X 2 matrix spectral problem:

Y™ (x2) = G{x,2jY™(x,2), xeR, (la)
G (x,2)=I + zo, + U(x), (1b)

where I is the identity matrix, o5 = (5 % ), z plays the role
of spectral parameter, and U (x) is a (complex) z-independent
potential function.

Given the matrix function U (x), (1) defines a homogen-
eous RH boundary value problem on a strip of the complex x
plane. The matrices 3 *(x,z) are the boundary values of a
function ¥ (x,z) holomorphic in the horizontal strip between
Imx=0and Imx =17:

Yt (xz)=lim ¥ (x + iy,z), x€R, (2a)
»i0

* Permanent address: Dipartimento di Fisica, Universita di Roma I, 00185
Roma, Italy.
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Y (x,z)=lim ¥ (x + iy,z), xeR. (2b)
yin
It turns out that ¥ (x,z) can be written as

wixz) = expl — g5 [ coml e — )]
2imJ_ . 7
Xh(x'2)dx" + const), O<Imx<7, (3)
where
exp[n¢ (2)] =1+ zo, and A (x,z), defined by
hxz)= — (I +z05)" " exp[if (Zx]U (x}¢* (x,2)  (4)
is Holder continuous on x€R and satisfies the condition

|£2  hix,z)dx| < . Moreover, formula (3) implies the fol-
lowing periodicity condition:

¥~ (x.2) = (E¢™)ix,2), (5a)
where E = explin d, ) is the formal shift operator
(Bf x) =fx + in). (5b)

It was shown in Ref. 18 that the linear problem (1) and
the associated class of evolution equations reduce, in the lim-
it —0, to the generalized Zakharov-Shabat-AKNS scat-
tering problem'® and to the associated class of nonlinear evo-
lution equations.!®?° Moreover, for the class of nonlinear
equations associated with (1), an infinite family of conserva-
tion laws was derived and only elementary properties of the
spectral problem were essential for that derivation. In fact,
the emphasis in Ref. 18 was mainly on the novel nonlinear
evolution equations, such as an intermediate version of the
nonlinear Schridinger equation, and on their associated Lax
pair.

In this paper we present new results concerning the RH
boundary value problem (1) and the class of evolution equa-
tions associated with it.

1. THE BASIS CONSTRAINTS

In the theory of matrix RH problems?’ of the type (1) an
important role is played by the determinant of G (x,z). In our
case
det G (x,2) = 1 — 2> — z tr{o, U (x)) + tr U (x) + det U (x).

(6)

All the results of this paper are derived when the potential

matrix U(x) is subjected to the following two scalar con-
straints:

tr{o, U (x)) =0, (7a)
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tr U(x) + det U{x) =0, (7b) .

or equivalently

Ux) =1+ Q7%x) — 14 Q(x), (8)
where Q (x) is the off-diagonal part of U (x). In this case the
determinant of G (x,z) takes the particularly simple form

det G(x,2) =1 — 22, 9)
independent of x with the following important conse-
quences.

(i) The matrix G (x,2) is invertible for every xeR; thisis a
necessary condition for the solvability of (1).

(ii) The total index « of the matrix RH problem (1) is
zero, since

={2m)~'[arg(det G (x.2))] * 3, (10)

where [G(x)] ., =0(c0)—0(— )

Then an important theorem due to Gohberg and
Krein®? shows that “generically” the two partial indices &,
K, (k = Kk, + «,) are both zero. This fact guarantees the exis-
tence and uniqueness of a bounded fundamental matrix
¥ (x,z) associated with (1).

lll. THE REDUCED CLASS OF EVOLUTION EQUATIONS

The existence and uniqueness of bounded solutions of
(1) can be used in the construction of the IST method for the
class of evolution equations introduced in Ref. 18, if and only
if the constraints (7) are compatible with the evolution equa-
tions themselves. It will be shown in the following that this is
indeed the case. Hence the constraints (7), introduced as re-
quirements for the solvability of (1), are in fact a reduction of
the class of equations introduced in Ref. 18 to the following
class of matrix nonlinear evolution equations:

0. = o L)Q, _ (11)
where

LF=igy1+ Q> DF+102 (@ F 11+ @?),

(12)

F is off-diagonal, ¢({y) is an arbitrary polynomial in y, and

(@f)(x)f—ﬂl— I dy{sinh[%(y Y

o= _ L [ T
(@ f x}= ﬂf_wdycoth[n(v x)]f(w. (13b)

In order to show that (8} is a reduction for the class of
evolution equations associated with (1), one has to show that
the set of the matrices U satisfying (8) is closed with respect
to the elementary deformations SU™ such that
8¢t = B *¢=. Namely, one has to prove that if U {x) satis-
fies (8) then

5U" = VT+07)1{Q60") +50°. 14

In Ref. 18 it was shown that the elementary deforma-
tions SU ™, such that §y* = B *¢*, are given by

UM =b,{((E—1)L"3)(1+ U) + [L"03,U 1}, (15)
with

B*t(xz)=b, i L"~Jo,z, b, arbitrary constants,

=° (16)
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where L "g,, defined in Ref. 18, is written here in the follow-
ing more convenient form:
L'oy=—}iZ '+ |)F, — }iZ —1)G,, (17)

in terms of the diagonal and off-diagonal matrices F, (x) and
G, (x), respectively, which are constructed through the fol-
lowing recursion relations:

Fn+1 = - 03((1 + Uc)Fn + %{an’Q } + %[Gn’Q ])’
(18a)

Gn+l _03(%{ ,Q}—(I/Z)[.@_IF",Q]

F,=0, G,=20, (18¢)
where [, ] and {, } are the usual commutator and anticom-
mutator between matrices and U, is the diagonal part of U.
The class of evolution equations is obtained by replacing
SU"/b, by U,.

Using Egs. (15), (17), and (8), one can show that

SUM — (VT 07060} — 60"

_ QM F,)
= +J1 507
,/1+Q’

X( e G.1) (19)

Moreover, if (8) holds, one can prove by induction that
the recursion equations (18) decouple in the following way:

F,=2J1+0%7'[0G,], (20a)

G,.,.=2G,, G, =20 (20b)
Then, from (19) and (20a), one immediately gets

8UM =21+ 07)'{Q.60"} + 60", 1)

From (15), (17), and (20) one finally obtains the evolution
equations (11) and from (16), (17), and (20) one gets the corre-
sponding time evolution of function ¥,

n—1
g == (2 2/L" oy +zn‘73)¢+’ (22)

2 j=0

where
Lioy= —§i2 '+ )1+ 07 [Q.£'~'Q])

— (2 —1)¥7-'Q (23)
and the polynomial y(y), introduced in (11), is taken to be
=a,y".

The first three equations of the class (11) are (see Ref. 18)
the following:
(i) an intermediate wave equation
. u—1 pv )
= — > = ’ R,
Y

(24a)
v, =1 +p?Dv, u=1+pv%

(ii) an intermediate nonlinear Schrédinger equation

=it o= )

i, + c[N1 = p[gP DT = p[YI* D)

PER,
(24b)
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— pY D~ "Rel* D] =0,

u=1—plyl;
{iii}) an intermediate modified KdV equation
.3 (-1 pv )
W) =icy, U—-( , w_1) PR
v, =1+ pr* D1 + p* D1 + pv* D0)D D),
u =1+ pv’. (24¢c)

Taking the 7—0 limit of Egs. {24a)—{24c) one obtains
the linear wave equation, the nonlinear Schrédinger equa-
tion, and the modified KdV equation, respectively.

The limit 7— o0 can be immediately performed,® re-
placing &2 and & ~' by H and — H, respectively, where

@=L [ a1 23

is the Hilbert transform. We conclude this section by notic-
ing that Eq. {24a) can be written in the following simple and
suggestive form:

279, =csinf, 0=0(x,t), (26)
where v(x,t) = i sin @ (x,7). In the limit 7->c Eqgs. (26) be-
come

Hf, = —csin b, (27)

which we refer to as the sine-Hilbert equation, in analogy
with the sine-Gordon equation 8,, sin 6.

IV. THE DIRECT LINEARIZATION

Postponing to a separate paper the presentation of the
IST method for the solution of the Cauchy problem associat-
ed with Eq. (11), we now present the direct linearization
(DL)* for the class (11).

The DL is an algebraic approach based on the existence
of a linear integral equation which provides a large class of
solutions of the evolution equations (11).

Proposition: Let u * (x,t,2) be the solutions of the integral
equations

dA (z')=1
2 -z ’

p* (2 + f pE(etZ)R *(nt2) 28)

where / and dA (z) are an arbitrary contour and measure
R = (x,t,z)=9" (x,8,2)4 (2)(fs" (x.1.2) ",
A (z) arbitrary, 29)

and (¥g" (x,2,2), U(x,t)) is a given solution of (1) and (22)
(where, of course, ¢ and U are replaced by ¥, and U). As-
suming that the homogeneous version of (28) has only the
trivial solution, then the matrices ¥+, defined through

UE (xtz)=p * (x, 12006 (x,1.2), (30)
solve Eq. {1} if the potential U(x,t} is given by

Ulnt) = Ugnot) + j [ (2R ~(x 4200,

— ot x,5,2)R tix,t,2)]dA (2). (31
The proof is direct and as in the spirit of the method as it was
introduced in Ref. 23; the constructive procedure used to
obtain Egs. (29) and (31) is illustrated in detail in Ref. 24,
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V. N-SOLITON SOLUTION
The N-soliton solution for the class (11) can be obtained
by setting Uyx,t)=0 (and then ¢g (x,1.2)
=exp[ — L (z}x + (@, /203t ]),
A1 —8,,)0((— 1Y Imz) {(32a)

[0 (x) is the usual step function], and

N
Y ¢élz—z) Imz;>0, Imz>0,
diz)=4 7,
- ¥ 8z—%), Imz <0, Imz<O.
i=1

(32b)

In this case Eq. (28) reduces to a 2N th-order algebraic sys-
tem; in particular, if ¥ = 1 we have the following one-soliton
solution:

uyi(X,t) = tyg(x,t) = (2; — zy)sinh[n(k, — ]_‘1)]/d e, ),

{33a)
it )=, 1 [coshiykye~#-4)
+ cosh(nk,)e ~*-®/d (x,t), {33b)
1y,(%,t ) = c,e ~ ™~ 71 [ cosh(nk, Je? -
+ cosh(nk,)e*-%11/d (x,t), (330)
where
Zi=zlk) = tan(yk), z,==z(ki)=taninks), (340

d (x,t)=cosh[5(k, — k)] + cosh[g, (k) — d_(k,)],

(34b)
¢ . (k)=2ikx —a,(z(k )t * 7, (34c)
— ¢/ (2, — ZyP=me? t = R, (34d)

and k,=} Im(k, — k,) and kr =} Re(k, — k) satisfy the ine-
quality

k2 + k2 — (w/2)k; <O. (35)
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Transforms associated to square integrable group representations. I.

General results
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Let G be a locally compact group, which need not be unimodular. Let x—U (x) (xeG ) be an
irreducible unitary representation of G in a Hilbert space /#{U ). Assume that U is square
integrable, i.e., that there exists in /#{U ) at least one nonzero vector g such that -

S|(U (x)g.8)|? dx < . We give here a reasonably self-contained analysis of the corresponidence
associating to every vector f&#{U ) the function (U (x)g,f) on G, discussing its isometry,
characterization of the range, inversion, and simplest interpolation properties. This
correspondence underlies many properties of generalized coherent states.

I. INTRODUCTION

This paper is the first of a series concerned with applica-
tions of various families of “generalized coherent states” to
quantum mechanics, wave propagation, and signal analysis.

Many properties of the classical (canonical) coherent

states'? are closely tied to the Weyl-Heisenberg group. In
particular, the fundamental formula .
1 =J.|z)d22(z| (1.1)

is a way of writing the orthogonality relations®* for the irre-
ducible representation of that group.

Aslaksen and Klauder® have considered the analogous
states for the two-parameter group of shifts and dilations
and found that the “fiducial vector” (“analyzing wavelet” in
our terminology) cannot be arbitrary, in contrast to the
Weyl-Heisenberg case.

The same two-parameter group appeared in Ref. 6 in
the study of decomposition of signals into “wavelets of con-
stant shape”; the restriction on the analyzing wavelet was
there called an “admissibility condition.”

Another (equivalent) representation of the same group,
together with an appropriate choice of the analyzing wave-
let, has given rise to a realization of quantum mechanics on a
Hilbert space of function analytic on a half-plane.”® Other
groups were used to define coherent states: SU(2) for spin
coherent states,” SU(1,1) in Ref. 10, and a general definition
was proposed by Perelomov.'!

In this paper we shall be concerned with “coherent
states” associated with certain representations of arbitrary
(in particular not necessarily unimodular) locally compact
groups.

Let G be a locally compact group, U a continuous irre-
ducible representation of G in a Hilbert space 77U ),and g a

vector in (U ).
We consider the family of vectors
x) =U(x)g (xeG) (1.2)

in #°(U). This family depends on the choice of g.

* Permanent address: ELF Aquitaine Company, ORIC Lab. 370 Bis Av.
Napoleon Bonaparte, Rueil-Malmaison, France.

" Allocataire D.G.R.S.T.
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Since Uisirreducible, the linear span of the vectors |x >
is dense in U ). ‘

One can then ask the question whether there exists a
(suitably normalized) invariant measure du(x) on G, such
that

flx>du(x)<XI =1, (1.3)

where |x) (x|isdefinedby |x) {(x|f> = (U (x)gf)U (x)g,and 1
is the identity operator in F#(U ).

The answer, in general, is no; this can be seen by taking
G =R (additive), and by considering the one-dimensional
irreducible representation space C, with U (x) the operator of
multiplication by e*

However, if the representatlon Uis “square integrable”
in a sense that will be defined below, then there exists a dense
set of vectors in #(U), which give rise to (1.3). If gis such a
vector (called “admissible”) then the correspondence f—,
with

Px) = (x|f) = (UxlgSf) (xeG, fe(U)), (14)
can be shown to be a multiple of an isometry between #{U)
and L ? (G,du(x)) and so (1.3) holds. The range of this trans-
form is a closed subspace of L *(G,du(x)), and can be charac-
terized by a reproducing kernel. If the group is unimodular,
the set of admissible vectors is the whole space F#(U ), but
this is not the case if the group is not unimodular (e.g., the
affine group).

The purpose of this first paper is to give general results
about transformations defined by (1.4). All the results de-
rived here can be found in the mathematical literature and
are part of the study of orthogonality relations for general-
ized square integrable representations. See, in particular,
Refs. 12 and 13. We write them here in a form that is coven-
ient for the applications we have in mind, using tools familiar
to mathematical physicists (e.g., we give another proof of
orthogonality relations with the help of quadratic forms).

The second paper of the series will be devoted to the
particular case of the “ax + b group, which has given rise
to applications in applied mathematics.®

Further papers will be concerned with discrete versions
of (1.2) and (1.3), with analyticity propertles, special cases,
and applications.
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1l. SQUARE INTEGRABLE REPRESENTATIONS;
ADMISSIBLE VECTORS

In this section we present basic notions that will be used
in the construction of transforms defined in Sec. IV.

A. Notations

G will denote a locally compact group, with identity e,
and x, y,... elements of G. It is well known that there exists in
such a group a left-invariant and a right-invariant (Haar)
measure.>* The left-invariant measure, with a fixed normali-
zation, will be written dx. So

dyx)=dx (yeG). 2.1)
The right-invariant measure will be denoted by dg x:

dr(xy) =dg(x) (veG). (2.2)
One has
drx =4 ~x)dx, d(xy)= A4 (y)dx, (2.3)

where 4 (x) (the modular function) is a positive-valued char-
acter

d(e)=1, A(x)>0, A(xy)=4(x)(y)

If 4 (x)=1, the group G'is said to be unimodular. Notice
a collision of terminologies: the group GL(n,R) of nonsingu-
lar nXn matrices is unimodular, even though it contains
nonunimodular matrices.

The inhomogeneous group IGL(n,R), a semidirect pro-
duct of translations in R and of GL{#;R), is not unimodular.

When one deals with semidirect products, it is conven-
ient to use the right-invariant measure dp x, since it is the
product of the right-invariant measures of the factors (see
Ref. 14, p. 210).

We have

(2.4)

dix ') =4 ~'(x)dx = dyx. (2.5)
If x—>& (x) is any function on the group, define
&:d(x)=D(x") (2.6)

Notice that & = .

Then .

(@ is left integrable)>(@ is right integrable)
and the corresponding integrals are equal, since

f‘fb (X)d g x = f & (x~)d(x™Y)

= f¢ (x')dx’.
We shall need the following statement: Let @ (x) be a
complex-valued function on the group G, such that
D(x)=Dx"") (xeG) (2.7)

[here @ (x) is the complex conjugate of @ (x)]. If, for some p,
with 1<p< + «, we have PeL?(G,dx} and if @ satisfies
(2.7), then also PeL? (G,dx).

Here $eL? (G,dx) means

f|¢(x)|P dx < o0,
the integral being taken over G.
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B. Left and right regular representation

Left regular: If ®eL*G,dx) and aeG, we define
A (@)PeL ? (G,dx) by

A@P)x)=Pa 'x) (xeG). (2.8)

Right regular: If WeL *(G,dgx) and aeG, we define
pla)¥eL *(G,dg x) by

P@)¥)x) = ¥(xa) (xeG). (2.9)

The two representations A and p act unitarily—in dif-
ferent spaces in general, namely L %G,dx) and L %(G,dg x).

C. Definition of square integrable representations and
of admissible vectors

Let x— U (x) be a strongly continuous unitary represen-
tation of the locally compact group G in a complex Hilbert
space #°(U).

A vector geF7(U) is said to be admissible if

[1wwger s < + .

In (2.10) the left-invariant measure dx can be replaced
by the right-invariant measure dy x, since

(Ulxg:g) = (&, U (x)g);

(2.10)

SO

f (U (lg.g)? dx = f &.U (x—"g)|? dx
=f|(U(x—')g,g)|2dx

- [Iv gl dox.

Definition (2.1): U will be called square integrable if (i) U
is irreducible and, (ii) there exists in #°(U ) at least one non-
zero admissible vector.

Remarks: (a) Any representation unitarily equivalent to
a square-integrable representation is also square-integrable.

(b) If G is compact, any irreducible representation U of
G is square integrable. We shall see below examples of
square-integrable representations of groups that are not
compact.

(c) As an example of an irreducible representation that is
not square-integrable, consider the one-dimensional repre-
sentation x—¢* of R.

(d) If G is unimodular and if U is a square-integrable
representation of G, then every vector in #(U ) is admissible.
(See, e.g., Ref. 3.) We shall see that the situation is different if
G is not unimodular.

. ORTHOGONALITY RELATIONS

A. Historical comments

Orthogonality relations were derived by Schur (begin-
ning of this century) for finite groups, Weyl (in the 1920’s) for
compact groups, and Bargmann and Godement for (square-
integrable representations of) unimodular groups in the
1950’s; nonunimodular groups have been investigated more
recently.'>1?
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Orthogonality relations in the unimodular case are ex-
pressed by the following equality >*

L TR FIU (afsldx = A @8 lfin £

for every g,, €2, /1,./> in 77°(U ), where A depends only on the
square-integrable representation U.

B. Statement of orthogonality relations

We have the following'>'? theorem.

Theorem 3.1: Let U be a square integrable representa-
tion of G, acting on the Hilbert space 77 (U). Then there
exists in /#°(U ) a unique self-adjoint positive operator Csuch
that the following hold.

(i) The set of admissible vectors coincides with the do-
main of C.

(ii) Let g, and g, be any two admissible vectors. Let f;

and f, be any two vectors in (U ). Then

L (Ux)g0 SINU (X8 fo)dx = (Cer CRIf1u f)- - (31)

(iii)If the group G is unimodular, then C is a multiple of
the identity.

The proof in the general case uses an extension of the
Schur lemma and is given in the Appendix.

C. A special case

If g, = g, = f; = f>, then (3.1) gives that for any admis-
sible vector g, one has

(C8.08) =z [ 10 wls g ax, 3:2)
where || - || denotes the norm in #(U).

If g, = g, = g, one has

U 2d
| OEEAIw . £z = —”“’“—I’*"”ﬁ’”—i o f
(3.3)

IV. L, TRANSFORM AND A, TRANSFORM

In this section, we define the transforms described in the
Introduction and prove their isometry.

A. Definitions

Let U be a square-integrable representation of G acting
on F7(U), and let g be a nonzero admissible vector [see
(2.10)).

Associate to g the positive number

=T ”2 (U (xg.e)|* dx, (4.1)
which, by Sec. II A, is also
Cg = Iz ”2 (U (x)g.g)|* drx.
Notice that, by the results of Sec. II A one has
Cugs =4 (x0) 7 'c (4.2)

where 4 (x,) is the modular function.
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Forany fe77°(U ) consider the complex-valued functions
L, fand R, fon G, defined by

(Lef)x) = (1/y/¢, (U (xlgf)  (x€G), (4.3)
(Ref)x) = (1/f¢, Mg, U x)f) (x€G). (4.4)
One has

(Rof)x) = (Lgf)x ") (4.5)

The function (L f)(x) will be called the L, transform of
J- It depends on the representation U and on the choice of
the admissible vector g. For reasons which will become clear,
we shall sometimes call g the analyzing wavelet.
Similarly, (R, f)(x) will be called the R, transform of f.
Remark: By (4.2) and (4.3) we have

(Lyx o )X) = 4 (x0)' (L f Yxxo)- (4.6)
By the same argument we have also
(R U(x,)gf )x)=4 (xo)l/z(Rgf Jxg™ 'x). 4.7)

B. Continuity and boundedness

By the continuity of U (x) and continuity of scalar pro-
duct, the functions (L, f)(x)and (R, f)(x) are continuouson G.
By the Schwarz inequality, L, fand R, fare bounded on

G:
L)) <1/ e IFI llgl)s (4.8)
(R )x) <1/ e PN llgll, (4.9)

for every xeG.

C. Intertwining (covariance)

By the definition of L,, we have, for every fe7#(U),
aeG, x€G,

(Lefa™'x) = (Ula™'xlg.f) = (U (x)g, U (a)f),

which can be written as

Al@lL, =L, U(a). (4.10)
Similarly we have
(Rof)xa) = (g, U (x)U (alf),
giving
plaR, =R, Ula). (4.11)

D.Isometry of L, and of A,

We have the following proposition.

Proposition 4.1: (i) The correspondence f—L_f is iso-
metric from 7(U ) into L %(G,dx); that is, for every f,e5#(U ),
5,€72(U), we have

| L e = @12

(ii) The correspondence f—~R, f isisometric from (U )

into L %(G,dg x): for every f,e#(U), /,&7(U), we have

f (Ref1)x) (Refo)x)drx = (f1, f)- (4.13)
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Proof: This proposition is a corollary of Theorem 3.1; by
(3.3), we have

o) = "3"2

UL
=cl f U ) (U xlg, fo)dx

— [ TEB T Wik fiar

- f TF00 (Lo fo)x)dx.

The change of variable x—>x "', d (x~!) = dg (x) gives
fofd=— f W8 7) (Ul f)d
- if GO U))da (x)
Cg
- f Rof) (R /)M (x)

and the proposition is proved.

Remark:Since L, isisometricfrom 57U )into L %(G,dx),
L, is unitary from #U) to L, #°(U)C L *G,dx). By (4.10)
we see that L, #°(U ) is invariant under the left regular repre-
sentation. So L, is an intertwining operator between U and
the restriction of the left regular representation of G.

This construction allows us to consider the representa-
tion U as a subrepresentation of the left regular representa-
tion of G. The following section will give a characterization
of the range of L, .

The same remark is also valid for R, .

V.CHARACTERIZATION OF THE RANGESOF A, and

Let g be an admissible vector for U. Consider, on G, the
complex-valued function p, (x), defined by

Pex) = (1/c, (U (x)g:8) = (1/y/c, L 8)ix)
= (12, R &)x™ ). (5.1)
The function p, satisfies ;g (x) =pg(x~") and belongs,
by Sec. II A, to L 3(G;dx)nL *(G,dg x).
Proposition 5.1: (i) Let @ belong to L %G,dx). Then @
belongs to L, #(U)CL %(G,dx) if and only if the equation

& (x) = fpg(y*'x)cb ()dy

holds for every xeG.
(i) Let ¥ belong to L*G,dgxx). Then ¥ belongs to
R, 57\U)CL?*G,dgx)if and only if the equation

Wix) = fpg(yx—‘)w)dx(y)

holds for every xeG.

Proof: Notice first that the integrals (5.2) and (5.3) con-
verge for every x, since the integrand is the product of two
square-integrable functions.

(i) Suppose ® belongs to L,#(U). This means that
D) = (L, f)y) for some fe#°(U). By the definition of
Pg[(5.1)] and of L, [(4.3)], we have

1 1 -
fp,(v- 10 by = [ L.l ™'510 bl
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(5.2)

(5.3)
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1 e e
=] T e v
! f L1071 b)dy.
Ve :

From (4.10) we obtain

[oets 51 p1ay =L

Ver
= (1 (U xig. f)

= (L f)(x) = @ (x)
by isometry and definition of L, .

An analogous proof holds for R, .

We must now prove the converse part of the proposi-
tion. To do this we must have an explicit expression of the
inverse of L,.

Lemma 5.2: For every ®eL (G,dx) the expression

f L (Ux)gl)® ()dy

1
p=—| o ax (54
o ’
defines a vector in (U ).

Proof: The integral (5.4) is weakly convergent. Indeed,
for any Ye#°(U), the function x—{¢, U (x)g) is in L *(G,dx) it
isuptoaconstant (L, ¥)(x)].Since @ (x)eL %(G,dx), theinte-
gral

1

s
exists. Furthermore, by the Schwarz inequality in L %G,dx)
and isometry of L, we have

! f (U (x)g)b (x)dx

g

Then, by the Riesz theorem, the integral (1/y/c,)
X §¢@ (x)U (x)g dx defines a vector in (U ).
Lemma 5.3: If ® satisfies (5.2) then

Lg(\/lz.: f @ (x)U(xlg dx)(y) — o).

Proof: The computation of the left-hand side of (5.5)
gives
1

= [0 iUt isglax
Cg

f (U (x)g) (x)dx = f L0 (x)dx

<P |2 x6an 1€l 20 -

(5.5)

D (x)U lg, U (x)g)dx

= f D (x)p, (x~ y)dx = @ (y) by hypothesis.

Lemma 5.3 implies that if P satisfies (5.2), then @ be-
longs to L, (U ).

The same proof holds for R, .

During the proof of the proposition we have proved the
following.

Proposition 5.4: The inverses of L, and R,, on their
respective domains L, #(U) and R, #U ) are given by
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L;7'd= \/1?8_»[¢ (x)U (x)g dx, (5.6)
R =L [pu gy, 57)
C

8
where the integrals are taken in the weak sense.

Remarks: (1) The formulas (5.6) and (5.7) express the fact
that, on the range of an isometric operator, the adjoint coin-
cides with the inverse.

(2) The condition (5.2) can be rephrased by saying that
the space L, #°(U)C L %(G,dx) is a Hilbert space with repro-
ducing kernel’>'® (functional Hilbert space in the terminol-
ogy of Ref. 16). The evaluation functional in L, #/U) is

DD (x) = (e,,P),. 3G,dx) (5-8)
with
e.(y) =p, (v '%) = p, (x ). (5.9)

Similarly, (5.3) says that R, 7 (U)C L G,dg x) is a Hil-
bert space with reproducing kernel in which the evaluation
functional is

V¥ (x) = (he, ¥ )L xGdpn
with

ho) =P x ") = py ey~ (3.11)

(3) In terms of the dyadic notation used in the Introduc-
tion [{1.2)], the isometry property (4.12) can be written as

f d—x|x ><x| =1,

Cg

where the integral is taken in the weak sense.
Indeed, from (5.12) we get

[z ez gy gy,
Ve o Ve
which is (4.12).
The reproducing property (5.2) can be also deduced
from (5.12), since (5.12) implies
f <ylx> <x|f> dx — <y|f>
which is (5.2).
The same remark holds for R, .

(5.10)

(5.12)

Vi. COVARIANT INTERPOLATION

A. Interpolation for the left transform
Proposition: Let x,...,x,, be n points in G. For 1<ij<n
consider the number
M, = (U(x;)g,U(x,)g) = (U(x; 'x,)8.8)
= gpg(xi_ lxj)' (61)
Let M be the nXn positive definite Hermitian matrix
with entries M;. Assume that

det M #0. (6.2)
For 1<j<n, define a function &;(x) on G, by
@;(x) = (Ulx;” 'x)g.8) = c,p, (X, 'x). (6.3)

Let{y,...,5, be any n complex numbers.
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Defineon G the function @ (x) = D (x15....X, ;&1 0sbn 3X)

as
Dix)= — 1
det M
0 Dyx) D, (x)
M M,,
 det é:l 11 . 1
gn Mnl Mnn

Then we have the following.

(i) @ (x) belongs to the range of L,

PeL, H(U).

(ii) @ (x) satisfies

P(x;)=¢;
i.e., is a solution of the interpolation problem.

(iii) @ (x) is of minimal norm, in the following sense: If
@°**r s any other function on G satisfying (i) and (ii), then

e l>le |,
the norm being taken in L %(G;dx).

(iv) The interpolation procedure is invariant under left

multiplication in G, in the following sense: Let a be any ele-
ment of G. Then

(i=1,...,n),

M (ax,,...ax,) = M (x,,....x,, ) (6.4)
and

D (@ 150X 36 150056 38X) = P (X150 e X ;6 15eeesGn 3 XD

(6.5)

so that the left-displaced interpolation problem

Pilax;)=¢; (6.6)
is solved by the function

D\(x)=P(a 'x). 6.7

B. Interpolation for the right transform

Proposition: Let x,,....x,, be n points in G and & ,...,.§,, n
complex numbers. Consider the nXn Hermitian matrix
N=N{xy...x,)s

N; = ng(x.'xj— )= (U(xj- l)g’U(xi_ "g).

Assume that N is invertible, and define on G the func-
tion W (x) = W (X,5eeesX 36100 slm 3X)

as
1
W= -
0 ¥,(x) v,(x)
x det ;, N . (6.8)
[

where ¥;(x) = (U (xx;" ")g.8) (j=1,...,n).

Then, (i) ¥belongs to R, #(U ) C L %(G,dp x); (ii) ¥ takes
the prescribed values §,...,{, at the prescribed points
XiyeersXp s

¥(x)=¢ (F=1..n) (6.9)

(iii) ¥ is of minimal norm, subject to (i) and (ii); and (iv)
for any aeG, the function
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¥,(x) = ¥(xa™") (6.10)
takes the values £,,...,£, at the points x,a,...,x,,a,
Y x;a)=¢; (j=1,..,n) (6.11)

An alternative way of writing the interpolating func-
tions & (x) and ¥ (x) is

)= 3 S a5 (6.12)
V)= 3 3Lyl ) (6.13

where M —!is the matrix inverse of M, and N ~!is the matrix
inverse of NV.

The interpolations are typical of Hilbert spaces with re-
producing kernels and the proof can be adapted from
Meschkowsky."®

APPENDIX: PROOF OF THEOREM 3.1

In the proof of Theorem 3.1, we shall use the following
extension of Schur’s lemma.

Proposition A.1: Suppose that (i) G is a group; (ii) Uis a
unitary irreducible representation of G in a Hilbert space 57
(iii) 7 is a unitary (not necessarily irreducible) representation
of Gin a Hilbert space #”; (iv) T'is a closed operator from #°
to " with domain & C 7 dense in 7% and stable under U;
and (v) TU (x) = #{x)T on & for every x in G; then Tis a
multiple of an isometry, and & = #.

Proof: Let us denote by (-,-) and (-,-)' the scalar products
in % and 5", and by || - || and || - ||’ the associated norms.

Consider on & the scalar product

&Sf)r = &S) + (T, TfY
and the associated norm
lell7 = llgll* + 1| 7zl

Then &, equipped with the scalar product ()7, is a
Hilbert space which we call & ;..

Since
U7l _ _ A7ell” ,
el (I 7ell’? + llgll®
T is bounded from &  to 5.

Moreover U (x) is unitary in &
1U (el = U xkgll* + (I TU (x)g]|'}?
= |lgll* + (Il={x) T2l

= llgll* + (1 7&l|'’* = llgll7»

foreveryxin Gand gin &, and U (x) | » is surjective, since
for every geZ, g = U{x)U{x"!)g, and & is stable under
Ux—1).

By the usual Schur’s lemma'” we have that T'is a multi-
ple of an isometry from & ; to #”, that is

(172l = 2 ligli7»
for every g in &, which gives

(17l =4 llgll* + A (1 T2l

From this equality we see that 4 5 1 and that

(17l = [2 /(1 = A)]|lgll?,
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so T is a multiple of an isometry from & to ##” and conse-
quently extends to a multiple of an isometry from 5 to 7.
Since T was assumed closed, one has & = 7, and the pro-
position is proved.

If we take 7" = 7 and 7w = U, the same argument
together with the classical lemma of Schur shows that Tisa
multiple of the identity.

In order to prove Theorem 3.1, we first compute the
integral (3.1).

For g admissible, consider the following operator T,
from #(U) to L *G,dx): the domain Z of T, is the set of
vectors fin (U ) such that

JI(U(x)g.f)PdK + oo;

for fin Z, T, fis defined by

(Tf)x) = (U (%8, f).
For fin & and y in G we have

[ [

- [(wkP dx< + o,

by the left invariance of dx. So U (y) f belongs to Z for every
yin G, i.e., Z is stable under U and

T,Up)=L(»T, onZ.

We see that & contains the linear span of the set of
vectors U (x)g, x€G. This linear span is dense in #(U) by
irreducibility of U, so & is dense in #(U).

We prove now that T, is closed: Take a sequence {f;, ],
with £, €2 for every n, converging to fin # (U}, and such
that T, f, converges in L %G,dx) to gcL *(G,dx). Then T f,
converges to @ weakly in L?(G,dx) and the sequence of
L *G,dx) norms [|T,f, || is bounded.

By the continuity of the scalar product in Z#(U), the
sequence of numbers (U (x)g, f, ) converges to (U (x)g, f) for
every xeG. Then we have (see Ref. 18, p. 207) that

(Uxlg, f) = plx)

SO

f (U (g, )2 dx = Jl«p ()dx < + oo,

which implies that f belongs to & and T,f=¢. So T, is
closed.

By the extended Schur’s lemma (A.1), T, is a multiple
of an isometry: so & = #7U) and T, is bounded.

Now take g, and g, admissible; then T, and T, are
bounded and T'? T, is a bounded operator in #{U ). Since

LxT, =T,Ulx) (i=12),
for every x in G, we have

UXT2T, =TT, Ux),

87 8
for every x in G.
So, by Schur’slemma, 7'} T, is a multiple of the identi-
ty:
TT, =Cy, 1

8182
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This means that, for every f}, f, in 7,

f TR 7V Xl fo)dx = (T, fuT, fohercan

= (T8 T,, Ll
Cos. 112 (A1)
Let us now consider the number C, , defined by
= J (Ux)g/NU (x)g>fldx (A2)

o I
Here, C, .. is, by (A1), independent of f #0.

Let us denote by .« the set of admissible vectors.

The correspondence g¢: & X.&—C defined by
q(81:82) = Cyq, for g,,8, in & is by (A2) a positive, symmet-
ric quadratic form with form domain /. Moreover ¢ is
closed: indeed consider on &/ the norm || - ||, defined by

llellz = llell* + g(s.g).
Takea || - [[,-Cauchy sequence of vectors g, in «. This
implies that (i) {g, } is a Cauchy sequence with respect to the
#(U) norm, [so {g, } converges to g in #(U}), and (ii) that

lim q(gn _gm)=0’

n,m— oo

~—8m>s8&n

which implies that the sequence of functions g, of L %(G,dx)
defined by ¢@,(x) =(U(x)g,f) is a Cauchy sequence in
L *G,dx) and so converges strongly to geL *G,dx). Conse-
quently @, converges weakly to ¢ and the sequence of norms
l@. || is bounded.

Moreover the sequence (U (x)g,, .,f) converges for each x

inG to(U (x)g,f). Then (see Ref. 18, p.207), (U (x)g, f) = @ (x)
which means that, for every f in 47,
SHU g )P dx < + . In particular

S(Ux)g,8)|* dx < + « and so g is admissible. Furthermore
lim |lg, — g7 = lim [lg, —g]* + lim (g, — 8.8, —2)

=0+ lim g, — @ ”i’(G,dx) _
e ILFII?
which shows that g, convergesin || - ||, norm to g«

So « is complete and then, g is closed. Being as g is a
densely defined closed symmetric positive form, by the sec-
ond representation theorem,?® there exists a unique positive
operator C with domain .« such that

9(81:82) = Cpp, = (Cg1,CRy).

14
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This proves parts (i) and (ii) of Theorem 3.1.
Suppose now G is unimodular; then we can see that

(U, Ullg,) = Ilfllz—[ (U bey)g, SIU (xplg2 fldx
Ilfllz (Ux)g 1, NNU (x)g2 ) (xp ™)
= ¢(81,82):
This implies

(Up)~'CU i, U )~ 'CU lg,) = (Cg1,Cga),
and then U(y)~!CU(y) = Con Z.

By the remark at the end of the proof of Proposition
A1, it follows that C is a multiple of the identity since C is
closed, & dense in (U ) and stable under U.

This proves point (iii) of Theorem 3.1.

In particular, if G is unimodular, then &/ = (U ); that
is, if one vector is admissible, then all vectors are admissible.
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On a computation formula for the representation matrices of U(n)
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A d-matrix element of U(n}, which is called the semi-highest-weight d-matrix element and plays
an essential role for the D-matrix elements, is explicitly determined. By using the result, a formula
of computing the D-matrix elements of U(n) is given in terms of lowering operators corresponding

to those of Nagel and Moshinsky.

1. INTRODUCTION

In a previous paper,’ the Haar measure of SU{r) [U(n)] is
explicitly given in terms of the Euler-like parameters and
then the differential operators of the first and the second
parameter groups are computed. The D-matrix elements, to-
gether with the d-matrix elements, are introduced and their
orthonormal and the completeness properties are given in a
general form. It is, however, not given how to calculate the
D-matrix elements or the d-matrix elements contrary to the
case of SO{n),” although the method by means of the Young
tableau is known.?

The irreducible representation matrix elements for the
infinitesimal generators of U(n) have been known since
Gel'fand and Tsetlin® and studied by many authors.’
Though the explicit forms for the D-matrix elements are
known for n = 3 (Ref. 6) as well as n = 2, and studied in the
cases of any # {Ref. 7), those of U{n) seem not to be known in
detail as for SO(n). On the other hand, for SO(n) a computa-
tion formula of the irreducible representation matrix ele-
ments for any n, in which lowering operators are used, is
known.? Though the D-matrix elements of SO(n)} are calcu-
lated by operating the lowering operators on the highest-
weight D-matrix element which contains the highest-weight
d-matrix element,? in order to obtain the D-matrix elements
of U(n) it is necessary to know the highest-weight D-matrix
element which contains a semi-highest-weight d-matrix ele-
ment different from the highest-weight d-matrix element. It
is, therefore, essential for the D-matrix elements of U(r) to
determine the semi-highest-weight d-matrix element. Then
the D-matrix elements will be found by operating the differ-
ential operators with respect to the Euler-like parameters on
the highest-weight D-matrix element.

The pupose of this paper is to obtain the semi-highest-
weight d-matrix element and then to give a computation for-
mula to the D-matrix elements of U(n) through successive
applications of the lowering operators to the highest-weight
D-matrix element, as in the case of SO(r).”

In Sec. II, notations and some results needed in the fol-
lowing section are introduced, together with the definition of
the semi-highest-weight d-matrix element. In Sec. I, the
semi-highest-weight d-matrix element is obtained explicitly
and then a computation formula of the D-matrix elements is
given in a general form.

. PRELIMINARIES

In this section, some notations and the results necessary
in the next section are introduced, together with the defini-
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tion of a semi-highest-weight d-matrix element, according to
Ref. 1.

The generators e;; of U(n) having the matrix elements
{€:;)us = 88  satisfy the commutation relations

(2.1)

From these generators, we construct the generators of SU({n)
as follows:

E; =Me; +e)=E, for i#j
Eiy=(i/2e,; —e;)= — E ., for i<j,
1 j
E}j =———_(zek" —je'-t-l i+ l)»
2/ +1) Iy
for j=12,.,n—1

[eipekf} = 5;&3:: - 5££ekj'

(2.2)

The generators of U{n} are obtained by adding the unit gener-
ator E = Ze,; to the above n> — 1 generators of SU(r) and
this fact is, of course, due to the relation U{n) ~U(1) x SU{n}.
The n?> — 1 generators E, ;'8 may be arranged from 1 to
n* — 1 as follows:

E; ipyau_2=E;

Ej piai1 =Ey,

{i=12,.,j—1; j=23,..,n)

Ej’~ 1= Ej— 1j—1 (7 =2,3,...,n).
The commutation relations for these E;’s may be written as
follows:

[E)Ex ] = 1Y fiEr,

where f;,’s are the structure constants which are totally
antisymmetric with respect to their indices because of the
normalization of tr (E, By } = 8, /2.

The elements of SU(n} can be parametrized as follows:

g =g =g,

(2.3)

(2.4}

2
S‘") P ( ei¢""‘i+lr1-leionnfj+lEf—2)e‘.¢nn~lr1 (2'5)
J‘l=-In
g% = eitnTigituEsgitul’
where
Ii=(e; —¢€,1;41)/2
=(—i— 1B, , +4j+ 1E(j+1)2—1)/\/2—j-
The parameters take the values
0<By <7, 0<Py <4, O<¢;;_, <2m. (2.6)
© 1985 American Institute of Physics 2480



The Haar measure of SU(n) with respect to the above where7j and J; are the differential operators of the first and
parameters is given by’ the second parameter groups corresponding to D;, whose
n—1 0. g \2n—n—1 explicit expressions are omitted here.” It is noted that the J;’s

av, =111 cos—zl(sin ;')

i=1

satisfy the same commutation relations as (2.8), but the 7j’s
satisfy the relations with a minus sign on the right side of
Xd0,, dby |, AV, . 23,

The matrix elements of the unitary irreducible represen-
2.7) tations (UIR’s) of U(n) are given by the Gel’fand and Tsetlin

ied
dV, = cos L1y sin b db,, d,; dips,. basis _
: : M} = Ansenidi)s (2.11)

where 4; denotes (m, ;,m, ;,...,m;,). The non-negative inte-

gers my are subject to the conditions m, , ,>m,

>m, 1, , 1. The dimension of the UIR of U(n) is given as

The volume of SU(n) is given by V, = (47)"V, _,/[2(n — 1)1]
and ¥, = (47)>/2. The measure of U(n) is given by multiply-
ing (2.7) by d¢ and the volume of U{n) is given by 27 V.

The representation operators D; corresponding to the follows®:

generators E; satisfy the same commutation relations as (2.4) ’
N(ﬂ'n) = D(ll""’ln ]/D (n - 17*-"0);

[D;. D] =1 fiu Dy (2.8) (2.12)
The representation D matrix of SU(n) corresponding to the Dl ) =T[ G = L) L =my +n—].
parametrization (2.5) is given by i<k
Dgim=D "~ Vgl — T (S, The action of D; on the basis (2.11) is given by**

2.9 , kot
H(S(n))=(f1 ei¢nn—j+l7}4|e!9nn—‘j+lEf_z)e'.'ﬁnn—ITl’ (29) (Dy2_ 4 +lez_2)|mjk) = 2 Ajk—lklmjk—l + 1),
R j=1
j=n
k —

where T} is the r.epresenFation opera'tor clorresponding tol;. (Das_y — Dyr_,)lmye) = 21 Bl lm_ s — 1),

The following relations are noticed: =1

D,D"(g") =T.D"gh), k k=1 (2-13)

! ! 2.10) D (e )|my ) = (2} my — .21 my, l)lmjk>’
. l = j =z
D™g™\D, = J,D"(g"), where the matrix elements A and B have the explicit forms
|
44 _ [ _ I (my — My _y — i+ I Hmy 5 — Mmy_, —i+j—1) ]1/2
o Oymy_y —mye_y —i+j—Wmy_y —my_ —i+]) '
B _ [ I (mye —my_y —i+j4+ W2 Hmy_y —my_ —i+)) ]2
et I my_y —my_y —i+j+Dmy_y —my_ —i+}))

The basis (2.11) may be obtained by operating the lower- [;lements are determined by the d-matrix elements (2.16) pro-
ing operators on the highest-weight basis as follows’: vided that those of SU(n — 1) [U(n — 1)] are known. Fur-

M) = L (D) Ans{ A1 ), (2.14) thermore, it follows from (2.14) and (2.15) that the highest-
weight D-matrix element is determined from the d-matrix
element with a semi-highest weight which is defined by put-
tingd,_ ,=4,_,=4,_,in(2.16}, ie.,

where {A,_,} =(A, _,,...,A,) denotes the highest possible
values of the A’s; that is, A;=(my,,..m;,)
(j=1,2,...,n = 1),and .Z, (D,), whose explicit expression is

Ay
omitted here,” depends on the representation operators D;. d A,,'_ A by, (0)
Tl}e r.epresentatlon D-matnx. elements are defined by = A,_1{An_,) |e'8D"’ “4An_ 1 {An_2 )
sandwiching (2.9) between the basis (2.11]} as follows: (2.17)
D ‘l’:’ - (") We can calculate the D-matrix elements by operating the

lowering operators on the highest-weight D-matrix element
if we can give an explicit expression to the semi-highest-
weight d-matrix element (2.17). It is noted that the represen-
tation matrix elements of U(n) and SU(n) are obtained from

=4, {4, 1 }ID"E")A, {4, _ 1 }). (2.15)

The d-matrix elements are defined by

) @) each other by a simple replacement of the numbers m,'"°

An— ity , though the matrix elements (2.15) and (2.16) should be

= A AL A, 2} %4, {A._ 1] (2.16)  named those of U(n) because of the use of the U(n) basis
(2.11).

As is seen from (2.9) and the definition (2.15), the D-matrix Before obtaining the expression for (2.17), we give the
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orthogonality relation of the D-matrix elements as fol-
lows!!!:

(f ) p*a )

SU{n)dV D A ‘](g( [/1:,,.}{,1;,"_,}(3( )
=5M,.}l»1,’.15{4:.”_,1[zl,':_,} [Vn/N(ﬂ-n)], {2.18)
where 8§ stands for a product of Kronecker deltas in

{A.3{4 1)
each of the indices. Equation (2.18) leads to the orthogona-
lity for the d-matrix elements as follows':

2n—3
> Nid,_2) f d6 cos -z—(sin -—z—)

An—2
dmn)_,un W ,(9)"2;.’,.4,_2,“_,(6) (2.19)
_ 1 N N@G )
Win-1  N@,)
J

n—1

A, A, {4, _,}ID

n’—Z)Zl'{nAn—l{/{n—2]) = z (Bj;m—l)zlzl
i=1

lil. DETERMINATION OF THE SEMI-HIGHEST-WEIGHT
d-MATRIX ELEMENT AND A COMPUTATION FORMULA
OF THE D-MATRIX ELEMENTS

In this section, the semi-highest-weight d-matrix ele-
ment defined by (2.17) is determined explicitly and then a
computation formula of the D-matrix elements is given in
terms of the lowering operators.

From (2.17) and (2.13), we obtain by considering
M’n -1 —>An -1 )

457 h,_aa,_,16)
=1—(GZ/Z!KA'"An-—l{/ln—-ZH(Dn’—Z)z
XlﬂnAn—li'ln—Z})"}"" (31)

The matrix element of the second term becomes from (2.13)

n—1=4y_

i=1

The right side of (3.2) is easily calculated and given as follows
(see Appendix):

4(’1nAn-— 1 iﬂ'n—Z } I(Dnz—Z)z‘;{’nAn- 1 Vm-z”

n—2
= 2 my, — E Mg 3 — My,

i=1 i=1

(3.3)

We can, therefore, deduce the following expression to the
semi-highest-weight d-matrix element (2.17):

d (/"{:)—- 1y 24, @)
= (cos(@ /2)) == H 2 = e (3.4)

The validity of (3.4) can easily be seen by checking the
integral (2.19), i.e.,

@ (. 63
N4, _ Fda os—(sn—-)
/l?: “n-2) o © ' 2

Xd("n) 1WAy o)Ay _ 1(0)11“-,.) 1An—2)A, 1(0)

= [1V/in = D[V, _,)F/NA,)], (3.5)

where the summation over 4, _, means thesumsoverm,, _,
from m, _,, to m,, (i=1L2,... ,n—2). By using the well-

known formula
/2
f sin 70 cos 9 d6 =+ B (f—tl, gi_l_),
o 2 2
RepReg > —},
B(pg)=I(p" g/ (p+4q)

and (3.4), (3.5) gives the relation
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~n——lH;‘_‘( zn—m —l+]+1)nl=l(mm 2 Jn_l+j)
5 m, —my, —i+j+ Ymy —m, —i+j)
(3.2)
ZN('{n 2)

m,, + 1)'(n—1)
m,, + n)

P(E:':fmm — 2!"’ 1M —2 —
rEz{my, — 3 20mg, o —
= [1/(n — ) [(N{A,_,)*/N{A,)], (3-6)
whose validity is easily seen (see Appendix). It, therefore,
follows that the expression (3.4) gives the semi-highest-
weight d-matrix element.
A formula of computing the representation matrix ele-
ments can easily be given. It follows that the D-matrix ele-
ment with the highest weight is given by

(An (A, 1 }ID"N")A, {4, 1 ])
Z ({An—l }ID(n_l)(g(n—l))IAn—l {'{'n—2]>

{’{n—zl
e (vzw..nz:':.‘mo. — X7y — M)
A
xd n lM’n ‘zMn l(a"l)
X(An—l {in—Z}IH(:'—lHAn—l })’

(3.7)

where
n ibpn_j 1151 ‘Bnn—j+|Ef—2 LU
we=( 01 )y
As the matrix elements of H"_, are givenby é,_,; — &,
0,_1; = 6> ¥u_1n_2 — ¥un 1, and theother angles — 0
in those of D "~ V(gi” = 1), and the semi-highest-weight d ma-
trix on (3.7) is given by {3.4), the matrix element with the
highest weight is completely determined. Therefore, by tak-
ing into account the relations (2.10) and (2.14), the general D-
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matrix elements are obtained by operating the lowering op-
erators on the D-matrix element {3.7)

(An) n
D[ll.-d{/l.._d(g( ))
= LWL i)
X </1n {An—— 1 }ID(n)(g(n))M'n {An— 1 }>’

where the normalized lowering operators .Z,(/;) and
L n (J ) are obtained, respectively, by replacing the genera-
tors D; appearing in the lowering operators of Nagel and
Moshlnsky by the corresponding differential operators J;
and J whose expressions are obtained by the formula given
in Ref L
Thus we conclude that the representation matrix ele-
ments of U(n) [SU(n)] are given by (3.8) through the action of
the lowering operators on the D-matrix element (3.7) with
the highest weight. The only task for us is to express J; and-J_j
of (2.10) in terms of the differential operators and then to
construct the lowering operators by these. The calculation of
the formula for J; and7j is elementary but lengthy.'

(3.8)

APPENDIX: PROOF OF THE RELATIONS (3.3) AND (3.6)

In this appendix, it is shown that the sum (3.2} is given by
the right side of (3.3) and the refation (3.6} holds.

n—2
(mnn ——mjn —n+j+ I)H(min—Z -

my, —i+j)
i=1

n—1
X H (mln —my, —l+k)

I#j,k

(A2)

—(mnn ™ —n+k+ 1]

n—2 n—1
X H(min-—Z _mk” _i+k) H (mln _mjn '—l+j],

i=1 14k

which becomes zero for m,,, — m;, +j — k = 0. This holds
for each pair and it follows that the numerator contains the
factor of the form

n—1 ,

H (min - mjn ~i +.])

i#j

The degree of the numerator of (A1)is (» — 1)th and that
of the denominator is (#n — 2)th. It, therefore, follows that
(Al) is a linear form in m;, (j=1,.,n) and m,;, _,
(7= 1,2,...,n — 2) because of the cancellation of the denomi-
nator of (A1) by (A3). As (A1) becomes zero for m;, =0
(j=1,.,n)andm My = 0(j=1,...,n — 2), it must be linear
and homogeneous, i.e.,

(A3)

—2

Sam + 3 bima_s. (a4

: : - Equation (Al) becomes zero for my, =m,_
The right side on (3.2) can be rewritten as follows: (j=1,...n —2) and m,_,, = m,,. From this, it follows
n—1 i I Y myy_y — My, — i+ ) that b, = —a; (i=1,..,.n —2) and a,_, =a,. Further-
Z (Mpy —my —n+j+ 1) "= - more, by considering the case of my,_,=m; ,,
j=1 l';éj( in T jn-‘1+.]) . J 4
(A1) (j=1,.,n—-2),wegetm,, —m,, for(Al)anda, =a,_,
o . . In this way, by considering special cases for m,, and m,, _,,
By considering the jth and & th terms in (A1), there appears a we easily obtain
denominator m,, —m,, — k +j (k>j) with different sign i nea
only in these terms. Taking into account the common de- — 2 m,, + E My _ 5 + My, (AS5)
nominator and putting m,, — m;, — k + j =0 on the nu- i=1 =1
merators, we get the following form of the numerators: which gives (3.3).
Let us show that (3.6) is valid. Equation (3.6) together with (2.12) becomes
,gl M n-2( jn— 2 — My, —.’+k) 1 _7<—kl(mjn Mg, —J+k) (A6)
My 2= ~My, My 2m 2= Mp_1n H,":ll(z:'—_llmm - zn_ 1My 2 — My, +.I) (ﬂ - 2)’ jn:ll m,, '_.] + n) ’
which may be rewritten as follows:
& .. bn2 J<k2(pj Pk) — 1 ;<—kl(§ gk) (A7)
p=Er1 paE IDTIEIDE =22+ +j—1) (=2 SN +n)
where
pi=my_,—m,, —j (j=L..,n=2), §=my —m,, —j (j=1,..,n—1)
It can be proved that the following relation holds:
& .. bn2 ]<k2(p_] pk) — 1 _;l<-;cl(§j §k) (AS)
pr=&+1 py_p=fn_1+1 H}'=_11(Z— i=—l pi+n+j—1) (n—2)! I_Ijn:ll(z— 2?;11@ +§j +n)

where z may be any possible number and (A 8) gives (A7) in the case of z = 2! '£,. The numerator on the left side of (A8) can be

represented in the determinant form

AT P, o, py 1
n—2 n—3 —4

p . PR L, , 1
T (2= )= 2 : P2

p,".:i, PrT3 s Pu_zs 1

Making use of the relations

2483 J. Math. Phys., Vol. 26, No. 10, October 1985

(A9)
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n—2) ' e —2
BlEn—1)= ( =fx¢ (1—x'~2dx, Ref>0,
SE+1)-E+n—=2) Jo
& _ J £it 1 £ it 1 Sivt
pix=—yg e A e _r( L ] |e=o=fYx) — £ (), (A10)
Pi=& 4 1+1 ot 1 — xe
where the first relation corresponds to a special case of that below (3.5) and
gl & ] 1\ _ & 1)-& d (:I) & e (1)5:
x) = —| —— —] = — = _x(1- I Hezol—) All
fit) =l =o(5) =225 + 3 () et —xe o) (Al1)
we rewrite the left side of (A8) as follows:
e B
I A FOp s
(n—2) Jo : : :
e N IO R I
(A12)
f(ln - 3), f(xn -4 , (10), 1
1 n=3 -4 U
- 1 J‘dxxz+,,_1(1_x),,~2fz s f7Y, f2 ,
(n—2) Jo : : : :
(n—3)  pln—4) ) 1
n—1> n—10» R n—1»
where the argument x of the £;’s is omitted. x 1 (Al4
Substituting the expressions (A 11) for ) into (A 12) and e —Z12)6 +& +n) )

taking into account the fact that only the first term (All)
remains in each column due to the property of the determi-
nant, we get after a simple procedure

1 fldxxz—z,";,‘g.-+n_1
=21 Jo

-3 —4

-3 SR SR R

—3 —a

2§75 175 1, x5
X . .

-3 —4 En_

nl1s A P - ST T

(A13)

After simple integrals and the use of fundamental properties
of the determinant, (A 13) gives ‘

=2 3L, & 1
1 ;_29 ;_3; ser g §2, 1
(n—2) ' P
::%, ::?’ ey §n—11 1
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which agrees with (A8).
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Satake diagrams, lwasawa decompositions, and representations

of the exceptional Lie group ~4( — 20)
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The parabolic subgroups of the noncompact, exceptional Lie group F,( — 20) are computed from
a systematic analysis of Iwasawa and Langlands decompositions. Satake diagrams have been used
to determine the involutive automorphisms of F,( — 20) which facilitate the Iwasawa
decompositions. The polarizations associated with noncompact orbits with parabolic subgroups
are computed. The representations so obtained for these polarizations using Kostant’s induction
scheme yield the principal series representations of F,( — 20).

I. INTRODUCTION

Ever since the advent of noncompact groups, specially
the SO(m,n) and SU(m,n) groups in particle physics, the
study of unitary irreducible representations (UIR’s) of such
groups has generated brisk activities for mathematicians and
physicists as well.! The exceptional Lie groups and their
graded forms have only recently found much applicability
when attempts were made to unify the fundamental interac-
tions of particle theory with gravitation. However, very little
attention has been paid to the study of noncompact excep-
tional Lie groups. In the present paper, we specifically focus
on the exceptional Lie group F,( — 20) motivated by its rich
structure to accomodate many degrees of freedom (quantum
numbers). The other noncompact exceptional Lie groups
may be analyzed in an analogous fashion. Here, we discuss
the construction of principal series representations of
F,( — 20). The exceptional Lie group F, with compact form
F,(—52) has two associated noncompact forms: (1)
F,(— 20) with maximal compact subgroup SO(9), and (2)
F,( + 4) with maximal compact subgroup Sp(3) ® SO(2). The
plan of the paper is as follows.

In Sec. I, we give a brief resume of Iwasawa and Lang-
lands decomposition to compute the parabolic subalgebras.
Section III has two parts. In Sec. III A Satake diagrams” are
defined and used to compute the inner automorphisms of
A4 — 20), the Lie algebra of F,{ — 20). In Sec. I1I B, we dis-
cuss the Iwasawa decompositions of Z( — 20). In Sec. IV,
parabolic subalgebras of Z( — 20) are computed. It is shown
that /( — 20) has two parabolic subalgebras, one being mini-
mal and the other, the Lie algebra itself. The polarizations
associated with noncompact orbits with parabolic subalge-
bras are computed. The representations obtained for these
polarizations using Kostant’s induced scheme®* yield the
principal series representation of F,( — 20).

Il. RESUME OF IWASAWA DECOMPOSITIONS AND
LANGLANDS DECOMPOSITIONS®7

Let 2 be a real Lie algebra and let o be generated by its
compact real form ¢, by an involutive automorphism o de-
fined with respect to the Cartan subalgebra £ of ¢, 2, being
the complexification of ». The following commutation rela-
tions are satisfied by the elements of . :

[e..h ] =alkle,, heh, acd,
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Noge, . p, ifa+ Bisaroot,
[ea ’eB ] = O :
, otherwise.
[eat _2] =has h, €4,
Here, A denotes the set of roots of ;. with respect to 4 and
the Killing form is defined as B (e,.e _,) = — 1. The com-
pact real form 2, may be taken to consist of

2.1)

{ih,, for a = a,,a,,...,.a;, | =dim 4;

le. +e_,) (e, —e_,), foralla}.
Let 4 be the maximal compact subalgebra of ¢ defined such
that a € 4, iff a €  and ga = a, where ¢ is the involutive

automorphism. Let 4 be the subspace of ¢ such that a € 4 iff
a € g and oa = — a. Thus the basis of # consists of

{ih,, ez +e_,), fle, —e_,), foralla
such that exp a(h ) = 1}
and the basis of 4 consists of
{ile, +e_o)le, —e_,) foralla
such thatexp a(h) = — 1}.
Here, alh ) = B (h,h,), B (x, y) being the Killing form of ¢_.
Let « be the maximal Abelian subalgebra of 4 with di-
mension |m, | and ~ the centralizer of = in £. Complexifica-
tion of (« & ) gives a Cartan subalgebra £’ of o, with basis

H{,Hj;,..,H;. Then there exists an inner automorphism V
that maps /4’ into 4 such that

H,=VH; whereV=1][V,, j=1..L 2.2)
Let 4 * denote the set of positive roots, i.e., a positive sub-
space of 4.

Then,

1
h, = 2 bi@H;, aed™, ifbja)>0

ji=1
and (2.3)
if j is the least index, then b;(a)#0.

Correspondingly if the a’ are the roots defined with respect
to £’ then
4

h' = 2 claH;, Yh'eh, h, e
=1
Here, h, = Vh . and ¢;(a’) = b;(a). The positive roots can
again be divided into the two following classes:

(2.4)
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(i) P,={a: aed ™, alh)#aVaV 'h)};
(i) P_={a: acA*, ath)=aVoV'h),V he4}.
2.5)

Let the subalgebra 2 be spanned by elements ¥ ~'e, for
a € P, and » = 2ng, where % and » are the nilpotent subal-
gebras of 2, and g, respectively. Thus the Iwasawa decom-
position of & is given as

g=é®a@n. (26)

Now we discuss the Langlands decomposition. For the
sake of completeness of computational convenience we brief-
ly recapitulate some of the essential features of the Lang-
lands decomposition of parabolic subalgebras.

A minimal parabolic subalgebra is defined to be any
subalgebra that is conjugate to

Sf1=m@adan. 2.7

Any subalgebra of & containing a minimal parabolic
subalgebra is a general parabolic subalgebra. There exist
2!™l conjugacy classes of parabolic subalgebras of ¢ and in
each class there is a standard parabolic subalgebra which can
be obtained as follows.

Let 2 be the set of roots for » and let ¢ be the set of
positive roots in 2. Let & denote the subset of 1. Let (6 )
denote the set of roots in I which arises as linear combina-
tions of roots in 8. We define

(6)+ =2+ﬁ(0), <9>_ =2_ﬁ(0 >, (2.8)

where 2,3 _ denote the positive and negative roots in 3.

Let n_(6),n_(0),n(@) denote the subspace of = corre-
spondingto (6 ), ,{(6)_and (T, — (6}, }]. Now, letusde-
fine

ao={a€a A@)=0,YVAiech}, (2.9)
and let a(6) be the orthogonal complement of @, in = with

respect to the Cartan—-Killing form.
Then

Pg =My ®ay &Ny (2.10)
is a parabolic subalgebra of 2, where
mg=men,_(flen_(0)eald) 2.11)

A real Cartan subalgebra /£ is said to be o invariant if
A= (Ank) @ (4N ). (2.12)

A parabolic subalgebra p, is said to be cuspidal if there exists
a g-invariant real Cartan subalgebra £ such that

ae = éﬁ/c.

This shows that the minimal parabolic subalgebra is cuspi-
dal.

Ill. SATAKE DIAGRAMS AND IWASAWA
DECOMPOSITION OF /4( — 20)

A. Satake diagram and computation of inner
automorphisms for /( — 20)

Let 7" be a compact semisimple symmetric space, S the
group of displacements, % the isotropy group of the base
point, E a maximal torus in #, and 7D Q(E) a maximal
torus in S. Let R be the root system of S relative to Tand R
the root system of 7" relative to E. For a € R, let
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@ =2a|% =a—ola),

where % is the Abelian subalgebra of the Lie algebra z and o
is the involutive automorphism of a. Then,

R_={a@:a+#0, aeR}. {3.1)
Also, let
R,={aeR:a=0j}. (3.2)

Letw_ be a Weyl chamber in % and w a Weyl chamber in &
such that w_ Cw. Let B_ (resp. B) denote the basis of R _
(resp. R ) corresponding to w_ (resp. w). Then, B, will be the
basis of R, where B, = BnR,,. Let B /B, = {a,,...,2, }, and
B, = { By,---B; }. Then, it can be shown that®

—ola)=a., + 21: n.B: (3.3)

where 7 is the involutive permutation of {1,2,...,#} and the
n; are non-negative integers.
We have
B_={a@: aeB/B,},
and the rank of 7" equals the number of cycles of 7. We now
associate with B its Satake diagram X as follows. In the Dyn-
kin diagram of B, denote the roots ; by O as usual (white
roots) a%%he roots 3 by @ (black roots). If 7(i) = k indicate
thisby . The Satake diagrams determine the involution o
of R uniquely. As we know,
oiB;) =B;.
The maximal root for /; is W=2a, + 4a, + 3a,
+ 2a,. In the case of a Satake diagram corresponding to a
symmetric space of rank one, B_ = {4 }.Ifa; is a white root,
thena@, =A. Here R_={+A},orR_={+4,+21},
and since W € R _, we have only two possibilities:
case (i): —ola,) =a, +3a, + 205 + a,,
(3.4)
case {ii): — ola,) =2a, + 4a, + 3a; + a,.
These are shown in Fig 1. For the given roots of /;, we see
that in case (i) a=2a,+ 3a,+2a;+a,eR. Also
a + ola) = 2a, + 2a, + a5 € R, which cannot be possible.
Hence Fig. (I) (i) is ruled out. Thus the Satake diagram for /£,
is for /( — 20) and is given by Fig. 1 (i). From this diagram
we have the following information:
—ola,)=a, +3a, + 2a; + a,
(3.5)
ogla)=a,, olas)=a, ola)=a,).
The automorphisms for the other roots of /; are determined
from the relation

¢4+ B)=¢l4)+ 4(B),

% oy ey oy
(0 FIG. 1. Satake diagrams for Z( — 20).
—a«3» 0
oLy oy Ay o,
(i)
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¢ being the automorphism. Thus,

ola, + ay) = — (@, + 2a, + 2a; + a,),
ola; + as)=a; +a,,

olas +ay)=as +a,

o2a; + a3) =2a, + as,

ola, +a, +ay)= —(a; +2a, + a; +a,),

ga;tazt+a)=a,+a,+a,
(3.6)
oga,+a,+ay+a)= —(a;+ 20, +a;),

o2a;, + 2a; + a3) = — (2a, + 4a, + 3a; + 2a,),
o2a; + a3 + ag) =2a, + a3 + ay,

o2a, +2a, + a3+ a,) = — (2a, + 4, + 3a; + ay),
o(2a;, +2a, + 2a; + a,) = — (2@, + 4, + 2a5 + ay),
o(2a, + 3a, + 205 + a,) = ~ (20, + 3@, + 205 + a,).

B. lwasawa decomposition for /( — 20)

The Dynkin diagram for the algebra /, can be seen in
Fig. 2. The roots of /, are determined as follows.

If ¢ and B are two simple roots, then 2{(a, B )/(a,a)] = m
(an integer) and B — 2[( B,a)/(a,a))a will be a root. The a
string of roots containing Sis givenasf — ra,....6 + ga.The
roots for /, are

4 = {@,,05,03,0,4,0, + A0y + a32a, + A3,0; + Ay,
a,+a,+aya, +a;+a,
a, +a, +as + au2a, + 20, + a,,
2a, + a5 + anay + 20, + a3, + 20, + a; + ag,
2a, + 2a, + 2a, + a2a; + 2a, + a,,
a; + 2, + as + 04,0, + 20, + 2a; + a,,
a, + 3a, + 2a; + a,2a, + 4o, + 3a; + a,,
2a, + 4a; + 2a, + ay2a, + 3a, + 205 + a,,
2a, + 4a, + 3a; + 2a,}. (3.7)
From Fig. 2 we see that exp a{h )= + 1, for
@ = [0,03,04,0; + Q2,0 + A3,05 + Ay + A3 + A,
2a, + a3 + aga, + as2a, + 2a4 + ay,
ay +a, +as32a; + 4, + 2a; + oy,
2a, + 4a; + 3a; + ag2a, + 4a, + 305 + 2a,,
ay + 3a, + 20, + aga, +a, + a; + a,l (3.8)
and expalh)= — 1, for
a = {a,a; + 2a, + a32a, + 2a, + as,
a; +2a, + as + a,a; + 20, + 20, + ay,
2ay + 20, + a5 + a42a, + 3a, + 2a; + a,,

2a, + 2a, + 205 + a,}. (3.9)
1 )2 2
o—aqxD—0 FIG. 2. Dynkin diagram for /;.

oy oy Toly oy
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Thus, # has a basis consisting of ix, for a = a,,a,,a;,a,and
(e +e_,)ile, —e_ ) for a given by (3.8). Also 4 = {ile,
+e_,)le, —e_,), where a are the roots given by (3.9).

We select 2, a maximal Abelian subalgebra of 4
spanned by

Hi{=ile,+e_,) a=2a +2a,+a;+a, (3.10)
Then, 2, the centralizer of =z in 4, is given by { — iH},
—iH}, —iH}} with
—iH ] = ihg,
for B = {(13 +a2a, +as +ay
2a, + 4a, + 3a, + a,}.
The inner automorphism

V=TIV
is such that
H=VH;=— {2/(6,-,6,.)}”2h51,
where
8 =1{20,+2a;, + as +a,a; + a0, + a5+ ay,
2a, + 4a, + 3a; + a4l

(3.11)

(3.12)

We have
Hy= —{2h, +2h, +h, +h,}
Hy= — ko, +h,,}
Hy= — {Zha,' + ha, + ha.}’
H,= —{2h, +4h, +3h, +h,]).
Using (2.3), we have

A7 ={ —a,a,a;, —a, — (@ + aa, +as,

(3.13)

—lasta)a, +a+as, —(a, +as+ay),
— (a1 + ay + a3 + ay).2a; + as,
—(2a; + as + a,)2a, + 20, + a,,
a;, +2a; + a;, — (20, + 2a, + ay),
— 20, + 2a, + a5 + a,),

— (@ + 2a, + 2a; + a,),

— (a1 +2a; + a5 + a,),

— (2@, + 20, + 2a; + a,),

— 2a, + 4a, + 3a; + 2a,),

— (20, + 42, + 3a; + ay),

— (22, + 4a, + 2a; + a,),

— (a1 + 3a; + 2a; + a,),

—Q2a, + 3a, + 205 + a4)}.
Using (2.5), we have

(3.14)

P, = (—ayay =y — (@ + ada; +ay — (@ +al)
—lay+ a; + a3 + ay)2a, + as,2a, + 2a; + a,,
— (2, + 2a, + a3), — 2, + 22, + a5 + ),
— (22, + 2a, + 2a; + a,),
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— (@) + 2a; + a3 + ai),
— (22, + 4a, + 3a; + 2a,),
— (2a, +4a, + 205+ a,)}, (3.15)
and
P_ = {aya,+a,+as — (@, + a3+ ay)

—(2a, +a; +aa;, + 2a, + a;,

— (@1 + 2a; + 2a; + ay),

—(2a, +4a; + 2a; + a,),

—{(a; + 3a, + 2a; + ay),

—(2a, + 3a, + 2a; + a,)}. {3.16)

The basis elements of = C g, are givenby ¥ "¢, fora e P,
and are given by’

Vile o= —Hle, —e_,)—il2/aa)]"h,,

fora =2a, + 22, + a; + a,,
Viltra,ra, =27y o —i27V?

X880 Ny 20, + €20, + 40, + 205 + 00>

Ve le-—(2a,+4a,+2a,+a.)

= —i271? SEUNG, _ 2o, + ) € - 2, + 2

+27% g, 4ty b 20, 4 a2 _

Va_ ‘eaa =27 Uzea3 —i2" 1/2(3gn Na,a, )eZa,+2a,+2a3+a4’
Ve (o taa+20,+a)

= —27Y}sgn N, _,)e_,,

—1/2
+2 € _ (20, + 20, + 20 + a b

'—iieZa,+2a¢+a,+a,

Vile o =2""%_, —27'2
X(SBRN 1208 _ (o, 4+ 20, + a4 e
-1
Va € o, + 20, + 2, +a,)

= —27"sgn N, Je, +2 "%
Vile o =2""2%_, —i271/2

a -
X(sgIlNa,—a,)e—(Za,+2a,+a,)’

—(a, + 2a, + a, + a,)*

1 (3.17)
Va— e(2a, + 2a; + @)

— ~1/2 —1/2
= —i272sgn Ny o Jea, + 270, 4 20, 4 ay»
-1
Va'e (@ +ay

=212, — -1

—‘a] -+ ay)
X581 Novy (2, 4 ap € — @, + @ + s + >
Va e-—(al+az+a,+a.)

— ~1/2
= —i2 (Sgn Na,a, +ay )ea, +a,
+27 2%

—{ay +az +as+a,)?
-1
Va e(2a2 + 2a; + @)

—n—1/2 ~1/2
=2 ela;+2a,+a‘ — 12

Xsgn Na,2¢2+2a3+a¢92a,+4az+3a,+2a.!
Varle—-(za.+4a,+3a,+2a.)
= —i27'" 80 Ny, 20, + 20, + ) € - 2ty + 20, + )
+27 % _ o sty 4 30, 4 200
| k") Vv

a, +a; =ea1+a3’ a e-“(a3+aq) =e"(¢3+¢4}'

Now . is calculated from ~ng and it has the following ele-
ments:

—e—(zan+2az+as+¢4)} '-y[zha. +2ha, +ha, +ha4]’

—1/2, —1/2
2 (BZa2 +a, +e_ (2ay + a,)) —i2 (sgn Na,Zaz + ay )(eZa, + 4, + 2a, + a, +e_ (2c; + 4a, + 2a, + ) )9

—1/2
27750 No, 0 + @y (€20, 1 oy

—1/2
- e—(Za,+a,)) + 2 (eza.+4a,+2a,+a.) ~ €_(2a, + 4z + 20, + a) )

—1/2 =112
27 4e,, +e,)—i2 SEN N (€20, + 20, + 20, + 0, T €= (20, + 20, + 204 + )

272 sgn N, o, e,

—1/2
—e—a3)+i2 (e26,+2a,+2a3+a4 —e2a.+2a2+2¢z,+a,)9

—1f2 —1/2 .
i2 (ea, -e—a,)‘f’z SgnNa,—-a.(ea,+2a,+a,+a, '_’e(a,+2a,+a,+c‘)’

2_“ 1z Sgn Na,a, (edl

-1/2 —1/2
i2 (ea, —€_a,)+2 ! SENN,, _ 4, (2, 4+ 20, +a,

—1/2 —-1/2

2 Sgn Na.m (eda - e"'(h) + 1.2 (ezan + 205 4 a
—-1/2

1‘2 (ea,+a;

—-1/2
—1i2 sgn Na,a, +a, (ea. +a

—1/2
—e_gq)+i2 (ea1+2a2+a,+a4—"e(a.+2¢;+a3+a.)’

- e‘(za1+2¢2+01’)’

(3.18)

- e‘(2a|+zaz+¢3,)’
~1/2
-—e—(a|+az))+2 SgnNa»"(al“'az)(ean+az+az+“4

-1/2
“'e~(al+a,))+i2 (ea,+a¢+a,+a.

—€_ (g, +a,+a,+a.)’

“e—[al+a1+a,+a:.)!

—1/2 —1/2
2 (€20, + 20, + 2. + € — 20, + 20y + ) — 12 SBN Ny 20, + 20, + 0. (€20, + 4a; + 30y + 20, T+ € — (22, + 4ty + 361, + 2000 s

—1/2 —-1/2
2 SgnNa-(za,+za,+a,)(eza,+2a,+a. —e—-(2az+2a,+a4})+i2 (eza,+4a,+3a,+2a4‘“e—(za,+4a,+3a3+2a.)’

e"z"'as +e*(az+¢3)’ l(ea;+a4 —e—(a3+a¢))‘

IV. PRINCIPAL SERIES REPRESENTATIONS OF
Fa — 20)
A. Parabolic subgroups of ~,( — 20)
As noted earlier, there are 2!™! classes of parabolic sub-
algebras of 2, [m, | being the dimension of =. For /£ — 20)
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r
dim|m,| = 1. Therefore, there will be two parabolic subalge-
bras: one being the minimal parabolic and the other the Lie
algebra itself.” The minimal parabolic subalgebra

Sfg=m@adn
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is given by the sum of
m={ih,,a=0a;+ ay2a,+a;+a,
2a, + 40, + 3a; + a,l, ‘
and
a=lile, +e_,)a=2a+2a,+a;+a,l,

and » is given by Eq. (3.18). The minimal parabolic subalge-
bra being the cuspidal parabolic subalgebra leads to the fol-
lowing definition of a series of representations®:

p =ind§ (X 7), ceM, red.

We have that P, = MAN, a cuspidal parabolic sub-
group, defines the principal series representations. Since P,
is minimal parabolic and o = 1,,, M being Abelian, p is irre-
ducible. Note here that P,, M, 4, N, and G are the corre-
sponding groups of the Lie algebras 4, 2, «, », and g, 1e-
spectively.

B. Polarization and Kostants induced representation
for F4( — 20) (principal series)

Let & be semisimple and let /4 be a o-invariant split Car-
tan subalgebra, i.e.,

£ = (Anp) @ (Ank), (4.1)

¢ = # ® 4 being the Cartan decomposition. Let A denote the
set of roots relative to (g,4).

Let xex=hnp, ie, x=ile,+e_,), for
a =2a, + 2a, + a; + a, for £( — 20). Let us define

(n) = {aeA:a(x)=0}.
This condition, using (3.7), gives us
M ={taytlas+a)xle+a+as)
+ (@ + 2a; + a3),
tla, +a;+ay), + (22, +a; +ay),
+ (@ + 2a; + 2a5 + a),
+ (2a, + 2a, + a5 + ay),
+ (@, + 3a, + 2a5 + ay),
+ (2, + 4a, + 3a; + a,)l. (4.3)

Let G, be the isotropy group and g, the corresponding Lie
algebra. Let y be the character on G, associated with x.
Then g, can be written as*

(4.2)

#x =4+ ny (4.4)
when
~y=linspan { g :a € (n)}ng. 4.5)

Let A * denote the positive subspace of 4. Let x be quantiz-
able. There exists a positive polarization ., atx which is of
the form**

S =h4n+ ny, (4.6)
where

ny=1{8g.B€d™, Ba&{n)]}
and the B’s are given by

B ={—aua; —a, —(a, + aa, + as,2a, + a,,
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— (o, + a, + as + au)2a, + 20, + a,,
C = (2ay + 2a; + as), — (2a; + 2a, 4 2a, + ay),
— a1+ 22, + a5 + ay),
—2a, + 4a, + 3a; + 2a,),
—(2a, + 4, + 225 + a,),
— (2a; + 3a, + 2a; + a,)}. (4.7)

We note here that the polarization % satisfies the following

properties®*: (i) (B,[.#,.#]) = 0, where B is extended to ¢,

X ¢. by complex linearity and % is maximal w.r.t. this con-

dition, (ii) dim, % = }(dimg ¢ + dim g, ); (iii) & + Fisa

Lie subalgebra of ., where the bar indicates the complex

conjugation; and (iv) ¢, €. and . is ad G, stable, i.e.,
ad, ¢, V seG,,

S is said to be positive if

iB(x,[Z,2])»0, Vze /. (4.8)
Let us define**
d=Lng, e=(F + F)g, (4.9)

D = D,G,,and E = E,G, , where D, and E, are the analytic
subgroups corresponding to

d=5,, e=g (4.10)

Weextend y from G, toD. The Auslander—Kostant induc-
tion scheme** reduces to

Y
o = indg*(y)- (4.11)

We note that the representation (4.11) yields the principal
series representations of F,{— 20), which was defined
through the induction scheme from the cuspidal parabolic
subgroup P, discussed in Sec. IV A.

V. CONCLUSIONS

(1) To summarize our analysis, we have presented the
Iwasawa and Langlands decompositions of Z( — 20) in de-
tail. Use of Satake diagrams facilitates the Iwasawa decom-
positions.

(2) (a) The principal series representations are obtained
by induction from the known character associated with the
cuspidal parabolic subgroup P,; and (b} the same result is
achieved by resorting to Kostant’s induction scheme.

(3) The noncompact exceptional Lie groups were recent-
ly used in supergravity theories.” So it is interesting to study
the structure of the F,( — 20) group that may open new vistas
in elementary particle physics.

(4) The other noncompact exceptional Lie groups could
be studied in a similar fashion as F,( — 20).

We wish to report on other classes of UIR’s of F,( — 20)
in a separate paper.
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Thermodynamics of dimers on a rectangular L X M/ xX N lattice

Alain J. Phares and Francis J. Wunderlich

Department of Physics, Villanova University, Villanova, Pennsylvania 19085

{Received 18 February 1985; accepted for publication 31 May 1985)

The exact closed-form analytic solution of the problem of dimers on infinite two-dimensional and
three-dimensional lattices is obtained. Entropy, isothermal compressibility, and constant
pressure heat capacity of the system are given in terms of the normalized number density of
dimers. The absolute activity of dimers is also given in terms of the normalized number density; it
exhibits a behavior near close packing with a critical exponent exactly equal to 2, and with an
amplitude 1/(4¢ ), where ¢ is the molecular freedom per dimer at close packing.

I. INTRODUCTION

Two previous articles,' referred to as papers I and 1I,
were devoted to the study of dimers on two-dimensional lat-
tices irrespective of their orientation. Paper I presented a
new general mathematical technique for dealing with such
problems. The technique was based on the work of
McQuistan et al.? Essentially, recurrence relations were de-
veloped which needed decoupling. The systematic decou-
pling of these linear relations involving constant coefficients
was achieved by one of us.? Paper I also made the connection
between the partition function of dimers with absolute activ-
ity x and the largest z root of a polynomial P {x,z). This polyn-
omial depends on the size of the lattice L XM X N where L
and M are fixed and N is allowed to become infinite. How-
ever, the calculations performed in paper I were limited to
the value x = 1. Paper II is an extension of paper I; results
were obtained for values of the activity in the range 0~10 for
the partition function, the grand potential, the number den-
sity, the entropy, the isothermal compressibility, and the
constant pressure specific-heat capacity. An approximate
expression was derived for the partition function in terms of
the absolute activity for dimers on a square lattice, based on
the assumption that the z roots of the polynomial P (x,z) in-
crease exponentially with the number M of compartments in
any given row of the 1 XM XN lattice. No mathematical
proof of this fact was supplied beyond the simple observation
that this is true with a very good approximation in the range
M = 1-4. Results derived numerically by Gaunt* for the lo-
cations of the maxima of entropy, isothermal compressibili-
ty, and constant pressure specific-heat capacity were recov-
ered using the approximate expression.

This article has several objectives.

(1) We obtain the thermodynamic properties of aligned
dimers on finite and infinite two- and three-dimensional lat-
tices, explicitly in terms of the absolute activity and the nor-
malized number density. For aligned dimers, the largest z
root of polynomials P (x,z) is shown to exhibit the exponential
behavior with the size M of the lattice. Therefore, this paper
gives the first rigorous mathematical justification for the cal-
culations performed in papers I and II.

(2) Following an approach completely different from
Kasteleyn’s,” we calculate the molecular freedom per dimer
atclose packing @ forplanar 1 X M X N lattices(N— o0 ), and
we recover Kasteleyn’s results for M = 1, 2, 3, and 4. How-
ever, Kasteleyn’s formula is much more general since it al-
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lows one to obtain @ for any value of M and it predicts its
exact value when both M and N are infinite. The advantage
of our technique is that it can be extended to three-dimen-
sional lattices L XM XN {N— o). As a special case, we cal-
culatetheexact valueof @ forthe2 X2 X N lattice, a problem
investigated by Hock and McQuistan.®

(3) We show that it is possible to obtain an analytical fit
to all the thermodynamical quantities for dimers on various
square lattices we have calculated in paper II. This is
achieved by using the exact analytic results for aligned
dimers, where the molecular freedom per dimer at close
packing @ (which is 1 for aligned dimers) is replaced by the
value calculated exactly by Kasteleyn,® and a parameter Q
(which is 2 for aligned dimers) by 4. Agreement with the
numerical values of paper II is astonishingly good.

(4) The success of analytical fit for various finite two-
dimensional square lattices is extended to obtain exact ana-
lytical results for the infinite two- and three-dimensional lat-
tices based on the knowledge of the molecular freedom per
dimer at close packing. In support of the approximate analy-
tical fit for finite three-dimensional lattices, we calculate the
thermodynamical properties of dimersona 2 X2 X N lattice,
a problem investigated recently by Hock and McQuistan.5

The general outline of this article is as follows: Section I1
develops thesolutionof dimersofan L X M X N lattice paral-
lel to the M axis; dimensions L and M are fixed while N is
allowed to become infinitely large. We think of the (L, M)
plane as “‘horizontal,” and we refer to this case as the case of
horizontal dimers. Here, there is perfect symmetry between
dimers parallel to the L axis and dimers parallel to the M
axis. The case of dimers parallel to the N axis (or “vertical”
dimers) is distinct from the case of horizontal dimers, since
the dimers are parallel to the N dimension which is allowed
to become infinitely large. For this reason we discuss in a
separate section, Sec. III, the case of vertical dimers, or
dimers parallel to the N axis. The purpose of Sec. III is to
confirm the internal consistency of our method. Indeed, al-
though the point of view is different, the results for vertical
dimers should be the same as those for horizontal dimers,
when both N and M are allowed to become infinite. In both
cases, one discovers the exponential behavior of the largest
root mentioned above. In Sec. IV, we derive the values of the
thermodynamical quantities explicitly in terms of the nor-
malized number density; we also give their graphical repre-
sentations and make the comparison with those obtained in
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papers I and II for dimers irrespective of their orientation.
Another achievement of this section is to obtain the closed-
form analytic expression of the absolute activity in terms of
the normalized number density, showing the behavior near
close packing with a critical exponent exactly equal to two as
conjectured by Gaunt.* Section V develops a method for cal-
culating the molecular freedom per dimer at close packing
based on the knowledge of polynomial P {x,z). The method is
applied for dimers on lattices 1 X 1 XN, I X2XN, 1X3XN,
1X4X N, and 2 X2 X N. Section VI discusses the analytical
fit of the data available for dimers on a two-dimensional
lattice and extends the analysis to the three-dimensional
case. Finally, Sec. VII is the conclusion.

Il. HORIZONTAL DIMERS

The method of McQuistan et al. as generalized in paper
I calls for generating truncated lattices from the original one.
Consideran L XM XN lattice space. The horizontal dimers
are assumed to be aligned and parallel to the M axis. We view
our lattice space as being made of NV arrays, each array con-
taining L X M cells. Wenow focus on the ¥ th array. Since all
possible dimers occupying the lattice are parallel to the M
axis, dimers whose one end is in the N th array will therefore
have their other end within the same array. Using the nota-
tion of paper I, this means that one can only generate lattices
of the A type (nontruncated).

The next step is to consider filling the L X M X N lattice
with g dimers parallel to the M axis, where L and M are fixed
and N is allowed to become infinitely large. Let
A (g — p;L,M,N — 1) be the total number of possible arrange-
ments of (¢ — p) dimers on the L XM X (N — 1}lattice when
the NV th array is occupied by p dimers. Also, let C (p;L,M ) be
the total number of possible arrangements of p dimers on the
N tharray containing L X M cells. It is obvious that the total
number of distinct arrangements of ¢ dimers on the whole
lattice when p of these dimers are located in the NV th array is
given by the product.

Cl:LM)A (p — q;L,M,N — 1).
It is also obvious that the total number of arrangements of
thegdimersofthe L XM XN latticeis the sum ofall possible
arrangements when the NV th array is empty (p = 0), occupied
by only one dimer (p = 1), by two dimers (p = 2), etc., until it
is fully occupied (p = p,., ). In other words, one has

Pmax .
A(GLMN)= Z Clp;L.M)A (g —p;,LMN —1). (1)

Upon introducing the bivariant generating function

Imax

Gixy)= 3 > x%4(GLMN), @)

N=0g=0
and using it in Eq. (1), one obtains

Pmax

G(x,y)=1+ ) x%yC(p;LM)G x, ). (3)
p=0

This, in turn, gives the closed-form expression of the bivar-
iant function, as the inverse of a polynomial D (x, y) which is
of first order in the variable y. Following the method of paper
I, one sets y = 1/z and searches for the largest z root of the
polynomial
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P(x,2) = D(x,1/2), (4)
which, in this case, has only one root, namely,
Pmax
Ryx;L,M) = 3 x*C(p;L,M). (5)
p=0

One next step is to calculate the closed-form expression
of the root R;(x;L,M ). This we will achieve by recognizing
that C (p;L,M ) is the total number of arrangements of fitting p
dimers parallel to the M axis on the two-dimensional L X M
lattice. The same approach is to be used over again. We think
of this lattice as being made of L rows, each row made up of
M cells. We single out the L th row. Let 7 be the number of
aligned dimers filling the L th row, thus allowing (p — 7)
dimers to fill the remaining (L — 1) rows. Then
C(p — r,.L — 1,M) is the total number of distinct arrange-
ments of (p — 7) dimers parallel to the M axis in the (L — 1)
rows of cells. Let F (r;M ) be the number of arrangements of »
dimers in the L th row containing M cells. As before, it then
follows that

Tmax

CpLM)= Y FirM)C(p —r,L — 1,M). (6)
r=0
Again, one introduces the bivariant generating function
© Pmax
G.x,p)= 3 3 x»'C(p,LM) (7)
L=0p=0

Combining Egs. (6) and (7), and using again the technique
outlined in paper I, one is able to show that

pf‘xf’c (oL M) = (rmfxfﬁ(r;M ))L. (8)

We have now reached the last step in our derivation,
which is finding the expression of the right-hand side of the
above equation. This is the problem of dimers in one-dimen-
sional space, solved already by McQuistan et al. and rede-
rived differently in paper I. It is straightforward to show that

"max

Rix;M)= Y xF(r:M)

=@~z —z). 9

In Eq. (9), z, and z, are the z roots of the quadratic equation

z,—z—x=0, (10)
namely,

=1+ (1+40)"2), z,=4{1-(1+4x'2}. (1))

Finally, the root to be used for calculating all the thermo-
dynamical quantities is

Ry(x;L,M) = (Ry(x;M ))*
=((211u+1 —z§'+1)/(z] —22))L- (12)

As anticipated in the Introduction, Eq. (12) exhibits an
exact exponential behavior in L and an almost exact expo-
nential behavior in M, this behavior in M becoming more
and more accurate as M becomes larger and larger. This
follows from the fact that the positive root z, is, in absolute
value, larger than the negative root z,; thus, given the ap-
proximation for large values of M

Ry, LM ) = (z,(x))"™. (13)
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Weleave to Sec. IV the derivation of the thermodynam-
ic quantities explicitly in terms of the normalized number
density, including their graphical representations.

lil. VERTICAL DIMERS

We now consider the case of dimers parallel to the N
axis. For simplicity, we will assume that L = 1. The analysis
that follows can be easily extended to any value of L. How-
ever, since the purpose of this section is to exhibit the inter-
nal consistency of our method, there is very little to be gained
by doing our discussion for any value of L. The case M = 1is
the one-dimensional problem whose solution is already
known (e.g., paper I). We will study the cases M = 2 and 3,
with the constraint that the dimers are parallel to the N axis.

There is no point in repeating the lengthy proofs similar
to those presented in paper I. The interested reader could get
the computational details directly from the authors. We will
simply state that the bivariant generating function associat-
ed with the number of distinct arrangements,
A(g;L = 1,M = 2,N), of g dimers on the 1 X2 X N lattice, is
calculated to be

G (x,y) = (1 —xy)/Dx, y), (14)

where D (x, y) is a polynomial in x and y. Replacing y by 1/z,
one looks for the z root of

Dix,1/2) =y} —(x + 1) —x(x + L)z +x%).  (15)
The z roots of this cubic polynomial are easily found to be
(@) (f, and —x, (16)

where z, and z, are the values listed in Eq. (11). The first root
listed above is the largest root.

In the case M = 3, the bivariant generating function as-
sociated with the number of arrangements
A (gL = 1,M = 3,N) of ¢ dimers parallel to the N axis on a
1 X3 XN lattice is

G(x,y) = (1 = x»*)(1 — xp — x*»*)/D (x, y). (17)
Here D (x,1/2) is a sixth-order polynomial in z, namely,
D (x,1/2) = y5(z° — (x + 1) — x(2 + 5x + 3x%)z*
— x}(1 + x — 2x3)2% + x*(2 + 5x + 3x)2*
— x%x + 1)z — x°). (18)

This polynomial has four real roots and two complex roots.
The root of largest modulus is real and positive. We were
able to obtain analytically the value of this root as well as
another real root by making possible the following factoriza-
tion:

D(x,1/2) = Y3z — z,%)z + 2,°)(z* — 2x2° — x(2x — 1)Z°

— 2x%z + x°). (19)
The largest root is (z,) raised to the third power. There is no
need of repeating the calculations for higher values of M.
The pattern is very clear, the largest z root of the polynomial
D (x,1/z) is (z,) raised to the M th power. Thus, in the case of
vertical dimers, the exponential behavior of the largest root
is an exact behavior. Without denying the intrinsic value of
the mathematical proof, it is worth recognizing that this ex-
ponential behavior for vertical dimers can be predicted on
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physical grounds. Indeed, consider the grand canonical par-
tition function of dimers on a 1 XM X ¥ square lattice with
the restriction that all dimers are parallel to the N axis.
Think of this lattice as made of M rows, each row containing
N cells. Fitting dimers in any of the M rows should not affect
the arrangements of the dimers on the other rows. In other
words, we are dealing with independent probabilities. There-
fore, the grand ecanonical partition function for large values
of N should be the partition function for one row made of an
infinite number of cells multiplied by itself M times, or,

Apx) = (A, ()™ (20)

We have already shown in paper I that the partition function
for dimers of absolute activity x in one dimensions is z,(x).
The exponential behavior of the z root follows. From this
analysis, supported by the mathematical checking, it be-
comes clear that the thermodynamical properties of vertical
dimers are the same as the thermodynamical properties of
dimers in one dimension.

IV. THERMODYNAMICAL QUANTITIES

This section gives the values of the thermodynamical
quantities of horizontal dimers and vertical dimers in the
limit as N becomes infinitely large, while both L and M are
fixed. We call Z (x), I" (x), p(x), and p, the partition function,
the grand potential, the number density, and the close-pack-
ing density, respectively. If one site on the lattice is occupied
by one end of a dimer, let Q be the number of neighboring
sites that the other end of the dimer can occupy. In the case
of aligned dimers, the value of Q would be 2. The general
expressions of the thermodynamic quantities can all be cal-
culated from the knowledge of the partition function (see, for
example, Ref. 4); namely, one has

rx)=(2/0)nz 21)
() =x%§. 22)

In the limit of an infinitely large lattice, the number density
at close packing is given in terms of Q as

Po=(1/Q). (23)
The isothermal compressibility X ;(x), the entropy per unit

volume S, (x), and the constant-pressure specific-heat capac-
ity per unit volume C, (x) will automatically follow:

Kx)= fo— = ky Tp*K 1(x), (24)
dx

Sx)= —pn(x)+T'=S8,/kg, (25)

Cx)=K(I/p)=Cy/kg. (26)

In the above equations ky is Boltzmann’s constant, and T is
the absolute temperature.

We now list the results for horizontal dimers on the
L XM XN lattice, where N is infinitely large, L can take on
any positive value, and M is restricted to be larger than 1 to
allow dimers parallel to the M axis to fit on the lattice. Fol-
lowing paper I, the partition function is the largest (and in
this case the only) root computed is Sec. II raised to the
power (1/LM ). This root is given by Eq. (12). It then follows
that the partition function for horizontal dimers is given ex-
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plicitly in terms of 2,(x) and z,(x), Eq. (11), which are the
roots of the quadratic equation, Eq. (10), namely,

Zx)={a"" =z Yz, — z)}"™. (27)

There is nothing to be gained in writing down the expres-
sions of the various thermodynamic quantities explicitly in
terms of x. However, we intend to discuss to some extent the
close-packing situation. For this purpose we give the expres-
sion of the number density

) = (M + 1x(zi + ) X
P M(1 4 ax)V2 M+t M+ M(144x)

(28)

Index H refers to the number density for horizontal dimers.
However, the number density at close packing is not exactly
1/Q =1; it really depends on whether M is even or odd.
Indeed when M is even, any row with M cells and full of
dimers contains exactly (M /2) dimers. But, if M is odd, any
row reaching close packing would have one cell unoccupied;
in this case the total number of dimers is (M — 1)/2; conse-
quently, v

Po=1 for Meven,

: (29)
po=H1—1/M), for Modd.

For vertical dimersonan L XM XN lattice(dimers par-
allel to the N axis), we discovered that all the thermodynami-
cal quantities are the same as those of dimers in one dimen-
sion. These quantities are calculated from z,(x). The
partition function Z (x) turns out to be precisely z,(x) (see
paper I). Using Eq. (11}, we obtain the number density

plx) = (2/Q)1 — 1/{1 + 4x). (30)
For the case of vertical dimers Q@ = {1/p,) = 2. Let & be the

normalized number density p/p,. It is then possible to use
Eq. {31) to express x explicitly in terms of 8, and one finds

x=6(2—6)/41—67 (31)

a Q.1 0.2 0.3 0.4 0.5 0.6 0.7

All thermodynamical quantities may now be calculated di-
rectly in terms of 6. The results are
ré)=2/¢)n(Z)=(2/Q)In{(2 — 6)/(2 — 28)), (32)

_9,62-6) 2 2-6

S(6)= Q.4(1_0)2+51n2_29, (33)

K(0)=0(2—08)1—8)20, (34)
_21—0)2—6), o 26

co)= 09 ‘nz(z(z_e))‘ (35)

By setting x = 1 in Eq. (31} one obtains the value of @ that
maximizes the entropy, namely,

.1 _2 (1445
6, =1 5 and S,,,“_an( > ) (36)

The quantity K (@ ) related to the isothermal compressibility
maximizes for = 1 — 1/y/3 and its value is
K... =1/3043. (37)

Finally, the specific-heat capacity maximizes for the solu-
tion of the transcendental equation

In[(2—-8)/2(1 —8)] =20/(2—-63, (38a)
which is found to be
0 =0.844 518 622, {38b)

From the knowledge of the entropy, one can also calculate
the molecular freedom per dimer at close packing®

¢ =exp(@S(0=1))=1 (39)

In Fig. 1, we plotted entropy curves for a system of
dimersonanL XM XN lattice parallel to the M axis, with &
allowed to become infinitely large. These curves are labeled
by the corresponding value of M and are, as predicted ana-
lytically, independent of the value of L (the number of M XN
layers). Figures 2 and 3 give X and C for the same system.
These plots are in terms of the normalized number density 8.

FIG. 1. Plot of S vs & for horizontal dimers.
Here S is {S;./kg), where S,, is the entropy
per unit volume and k; is Boltzmann’s con-
stant. 8 is the normalized number density.
The limiting curve labeled M = o« is the
same for both vertical dimers on a finite lat-
tice and horizontal dimers on the infinite
lattice.
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*
L o.1 ' M=4 %

FIG. 2. Plot of K vs & for horizontal dimers.
Here X is k5 Tp?K -, where K . is the isother-
mal compressibility per unit volume. @is the
normalized number density. The limiting
curve labeled M = « is the same for both
vertical dimers on a finite lattice and for hor-
izontal dimers on the infinite lattice.

One finds that these curves can be divided into two sets of
curves, corresponding to even and odd values of M, respec-
tively. In the limit as M becomes large, the limiting curve for
“even” and “odd” series of curves is precisely the curve that
one obtains for aligned dimers on the infinite lattice, which is
also the curve calculated for the one-dimensional problem,
as shown in Sec. III on vertical dimers. The limiting curve is
represented by a continuous line.

We end this section with a discussion on close packing.
We consider first the case of horizontal dimers. Near close-
packing conditions we chose to look for the leading terms in
the expression of the number density p(x), given by Eq. (28).
One finds that even and odd values of M lead to slightly
different results, namely,

1o

x ~ AM)/(1—(p/pol), (40)
P—>Po

where the critical exponent ¥ is exactly 2 and the amplitude
A (M) depends on the parity of M

AM)=(M+1)/2M)?, for M even,
AM)=(M/2AM —1)?, for Modd. (41)

These results are to be compared with Eq. (31) for vertical
dimers. The critical exponent is again 2 and the amplitude }
agrees with the value for horizontal dimers only for large
values of M, as one might expect. This critical behavior was
anticipated a long time ago based on various numerical ap-
proximations (see, for example, Ref. 4). We now have an
analytical expression predicting this behavior without rely-

FIG 3. Plot of C = C, /ky vs 6. Here C,, is
the constant pressure specific-heat capacity
per unit volume. @ is the normalized number
density of dimers. The limiting curve la-
beled M = oo is the same for both vertical
dimers on a finite lattice and for horizontal
dimers on the infinite lattice.
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ing on any approximation method for the case of aligned
dimers.

V. MOLECULAR FREEDOM PER DIMER AT CLOSE
PACKING

In the previous section, the molecular freedom per
aligned dimer at close packing was (not surprisingly) found
to be 1. Here, we intend to show that the molecular freedom
per dimer at close packing @ can be calculated from the
knowledge of polynomial P (x,z). Let z be the largest z root of
P(x.z)foran L XM XN lattice. The partition functionin the
large N limit is given by'

Z (x) = (z(x))"/*™. (42)
One combines this equation and Egs. (21) and (25) to obtain
S(x) = —pIn(x) + (2/Q )In(z(x))" . (43)

One multiplies Eq. (43) by Q, replaces'(Qp) by 6, the normal-
ized number density, and exponentiates both sides of the
resulting equation:

exp(QS (x)} = (z{x))*"/x°. (44)

In the close-packing limit, the absolute activity x becomes
increasingly large, while the normalized number density
approaches unity. In this limit, the left-hand side of Eq. (44)
is identified as the molecular freedom per dimer at close
packing, namely,

& = lim [(z{x)}* M /x]. (45)

In other words, the largest z root z(x) of polynomial P{x,z)
should behave at large values of x like

Zx) = ~ (Px)M7, : (46)

This observation allows one to calculate @ in the following
manner.

(1) Set z = Ax"™/? in the expression of the polynomial
Pixz2).

(2) Factor out x*, where « is the highest exponent of x in
the expression of P (x,z), and obtain V' (4,x) as

V(A,x) = P(x,AxtM /3 /x. (47)

(3) Take the limit of V' (4,x) as x approaches infinity,
namely,

VA= lim V(Ax). (48)

X—r o0

(4) Find the roots of V' (1), i.e., solve
Vid)=0. (49)

(5) The largest root of ¥ (1), say 4,, gives the molecular
freedom at close packing, namely,
D =AM, (50)
We use this procedure to calculate @ for the lattices men-
tioned in the Introduction: 1 X1 XN, 1 X2XN, 1 X3XN,
1X4 XN, and 2 X2 X N. The polynomials P (x,z) for two-di-
mensional lattices are found in paper II (Table I). The poly-
nomial P (x,z) for the three-dimensional lattice 2 X 2 X N was
derived in Refs. 2 and 3. Listed in Table I are the expressions
of V' (A) for various lattices and their associated roots. As
expected, we recover the results of Kasteleyn,” namely,

Lattice | IXIXN 1X2XN 1X3XN  IX4XN
o | 1 J1+45) 2+43)"® 1.68538903

We also obtain a result not predicted by Kasteleyn’s for-
mula, the molecular freedom per dimer at close packing for
the three-dimensional lattice 2 X2 XN

®=2+3)'2 (2X2XN). (51)
(See Table 1.

VI. GENERALIZATION

This section is concerned with the generalization of the
results obtained for aligned dimers to the case of dimers on
two- and three-dimensional lattices irrespective of their ori-
entation. In performing this generalization, we are guided by
the following facts.

(1) The partition function is given by Eq. (42).

(2) For increasing values of L and M, the root z(x) has an
almost exact exponential behavior in L and M. This behavior
becomes more accurate with increasing values of L or M, as
shown in the case of horizontal dimers.

TABLE I. This table gives a listing of polynomials V(4 ) for various lattices. The positive and negative roots of V(4 ) are obtained analytically and listed

separately. The quantity u stands for }(1 + 5).

Lattice Polynomial V(1) Roots
IX1IXN A1 +1 —1
IX2XN Ad_24%41 p=31+5)1 }1—45)
I1X3XN A®—64°+ 744 +8A°3 2+43 —1
1+42 1-2
—942-21 +1 1
2—-43
IX4XN AV 21131041 4+ p6—p+V5+p) Y w5 + ),
+ 142" 1 4140 - 3447 —V5+pull —J6=pn), W —p( =6 —p +V5+u)
— 8248+ 3817 + 8646 Yp+V5+u)LLl, +5+u(l —y6—p)),
—20A° — 4744 +44° 1 —p+V6—p), Wl—p—y6—p)—1,—1,—1,
+124% -1 1 —plV6—p + 5 +p) M —pf6—p—5+u)
+V5 —p(l +V6 —p)), —V5Ful +¥6—p)),
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TABLE I1. Thermodynamical properties of dimers on a 2 X 2 X N. The val-
uesof 6, S, K, and C are calculated for selected values of the absolute activity
x, using Eqs. (31) and (33}35).

X 9 S K C
0.01 0.037 41 0.035 16 0.005 84 0.006 24
0.02 0.070 37 0.058 37 0.010 35 0.011 74
0.03 0.099 75 0.076 48 0.013 90 0.016 64
0.05 0.150 12 0.103 67 0.019 04 0.02509
0.07 0.192 06 0.123 40 0.022 48 0.032 15
0.09 0.22778 0.138 47 0.024 85 0.038 19
0.12 027276 0.15543 0.027 17 0.045 84
0.16 0.321 26 0.171 39 0.028 91 0.054 141
0.20 0.360 60 0.182 67 0.029 79 0.060 92
0.30 0.433 98 0.199 87 0.030 30 0.073 67
0.50 0.52553 0.214 37 0.029 14 0.089 69
0.70 0.582 80 0.219 40 0.027 55 0.099 67
0.90 0.623 31 0.220 96 0.026 08 0.106 60
2.00 0.735 60 0.21575 0.020 69 0.124 53
5.00 0.832 60 0.197 56 0.01475 0.13573
7.00 0.860 45 0.189 32 0.012 86 0.13720
10.0 0.886 00 0.18029 0.011 05 0.137 21
13.0 0.902 43 0.173 64 0.009 84 0.136 17
19.0 0.92301 0.164 21 0.008 26 0.13297

(3) The behavior at large values of x of the root z{x), for a
given lattice size, is given by Eq. (46), or, more precisely, by

z(x) ~ (P (LM P72, (52)

where the molecular freedom per dimer at close packing,
referred to as @ (L, M ), depends on the lattice size. For two-
dimensional lattices, Kasteleyn’s formula gives®

o= oyt (rorsfin))

l's
M4+1
and for the infinite two-dimensional lattice,’

@ (1,00) = exp[2G /7] = 1.791 622 812 ..., (54)

where G is Catalan’s constant. Several people computed the
molecular freedom per dimer at close packing on the infinite
three-dimensional lattice. Nagle’s’ value is

@D (c0,0) = 2.4423. (55)

As reported in the previous section, we computed exactly
D(2,2) as

D(2,2) =2+ (56)

Based on all these facts, it is safe to assume that the root
z{x) for an L X M X N lattice is approximately given by

z(x) = (z,(x))"* = (3(1 + V1 + 4x))™, (57)
where z,(x) is the root for the one-dimensional lattice, name-
ly, the one listed in Eq. (11). Unfortunately, Eq. (57) leadstoa
molecular freedom per dimer at close packing equal to 1.
Clearly, this approximation is extremely bad for large values
of x. One is able to improve on this by requiring Eq. (52) to be
satisfied also. This is possible if one replaces Eq. (57) by

z(x) = [}(1 + V1 + 4@ (LM x)]*™. (58)
The above approximation becomes more accurate with in-
creasing values of L or M. With this in mind, we compute all
the thermodynamic quantities for dimers on an L XM XN
lattice (N— o0 )
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Zw) =41 +VIT 4O LMK), I'(x)=(2/Q)nZ(x),

(59)
plx) = (2/Q)1 — VT F 48 LM ), (60)
X60)=0(2—6)/40LM)1 0P, (61)
s@O)= —Zin—92—-9) 2n2=8 (&

0 4BLM)1-0) 0 2-20
K(@)=6(2—6)1—0)/20, (63)
1—0)2—6), (2-6

)= oo " (2 — 29)' (4)

Here Q = 2, 4, or 6 for one-, two-, or three-dimensional lat-
tices, respectively, all these closed-form analytic expressions
approaching the exact thermodynamic quantities in the limit
of the infinite one-dimensional, infinite two-dimensional, or
infinite three-dimensional lattices. We note that X (6) and
C (@ )areindependent of @ (LM ); they maximize for thesame
conditions specified by Egs. (37) and (38). However, this is
not the case for S (@ ). The value of 8 that maximizes the en-
tropy is given by

6,=1—-1/J1+4d(L M), (65)
arelation whose accuracy increases with increasing values of
L and M and which becomes exact for (L = 1, M = «) and
(L = 0, M = ), i.e., for the infinite square lattice and the
infinite simple cubic lattice, respectively. The case L = 1 and
M = 1is the infinite one-dimensional problem.

As a check of these mathematical expressions and their
accuracy, we find them to agree with the exact numerical
results derived in paper I1 for (L = 1; M = 2, 3 and 4) within
1.7% for the partition function Z. The partition function for
(L = 1, M = 2) computed from the approximate relation {59)
agrees within 1.5% with the exact values we compute nu-
merically using the method of papers I and II.

We plotted in Figs. 4-6,.5 (6 ), K (8 ), and C (@ }for infinite
one-, two-, and three-dimensional lattices (referred to as the
1D, 2D, and 3D curves, respectively). These curves are ob-
tained from Eqs. (62)-{64). For comparison, we also plotted
the points obtained by extrapolation in paper 1I for dimers
on the infinite two-dimension lattice. In Fig, 4, the points
obtained by extrapolation for S (€ ) are astonishingly close to
the exact analytical fit. This is consistent with the fact that
(in paper II) two different methods of extrapolation lead to
results agreeing within a 3% deviation. However, the extra-
polation of paper I is not as good for X (6 } and C (6 ) as made
explicit in Figs. 5 and 6, respectively. The reason for this
comes from the cumulative effect of errors in the numerical
computation of X and C.

VII. SUMMARY CONCLUSION

Guided by the study of aligned dimers and. the results
previously obtained in papers I and I1, we were able to obtain
an analytical fit of the thermodynamical quantities of dimers
on a rectangular L XM XN lattice, where N is allowed to
become infinite and L and M are fixed. The closed-form ana-
lytical expressions, Eqgs. (5964), are good to better than
1.7% error for low values of L and M, but are exact for the
infinite one-, two-, and three-dimensional lattices. In addi-
tion, other major results are the following.
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FIG. 4. Plot of S vs @ for dimers irrespective
of their orientations. Curve 1D corresponds
to the infinite one-dimensional case. Curve
2D correponds to the infinite two-dimen-
sional case, and the data points nearby are
those obtained by extrapolation in paper II.
Curve 3D corresponds to the infinite three-
dimensional case. Curve 2 X2 X N is the ap-
proximate analytical fit of the data points
nearby for dimers on a 2X2XN lattice.
These points are obtained exactly using the
techniques of papers I and II.

(1) As exhibited by Eq. (61), the behavior of the absolute
activity near close packing has a critical exponent

y=2
with the associated amplitude
_6@2-6) N 1
4D (LM) o1 4D (LM)

(2)Suprisinglyenough, X (6 Jand C (@ )areindependent of
the molecular freedom of dimers at close packing. The value

A

(66)

of the occupation density 8 for which K is maximum is
0 =1—1/3,and K, = 1/12y3 for the infinite square lat-

tice and 1/183 for the infinite cubic lattice. The value of &
for which C is maximum is & = 0.844 518 622. Finally, the
value of C at the maximum is 0.183 259 44 for the infinite
square lattice and 0.122 172 96 for the infinite cubic lattice.

(3) The entropy per unit volume divided by Boltzmann’s

constant S (9 ) maximizes at = 1 — 1/y/5 = 0.552 786 404
for the infinite one-dimensional lattice, at 8 = 0.650 069 136

FIG. 5. Plot of K vs @ for dimers irrespective
of their orientations. Curve 1D corresponds
to the infinite one-dimensional case. Curve
2D corresponds to the infinite two-dimen-
sional case, and the data points nearby are
those obtained by extrapolation in paper II.
Curve 3D corresponds to the infinite three-
dimensional case. Curve 2 X2 X N is the ap-
proximate analytical fit of the data points
nearby for dimers on a 2X2XN lattice.
These points are obtained exactly using the
techniques of papers I and IL.
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FIG. 6. Plot of C vs @ for dimers irrespective
of their orientations. Curve 1D corresponds
to the infinite one-dimensional case. Curve
2D corresponds to the infinite two-dimen-
sional case, and the data points nearby are
those obtained by extrapolation in paper II.
Curve 3D corresponds to the infinite three-
dimensional case. Curve 2 X2 X N is the ap-
proximate analytical fit of the data points
nearby for dimers on a 2X2XN lattice.
These points are obtained exactly using the
techniques of papers I and II.

0.8 0.9 }

for the infinite square lattice, and at 8 = 0.695 27 for the
infinite cubic lattice. The corresponding values of S are
0.481 211 826, 0.328 462 937, 0.253 73, respectively. These
results are to be compared with previous numerical approxi-
mations.*

(4) We developed a new method for calculating molecu-
lar freedom of dimers on three-dimensional lattices. How-
ever, at this stage, it does not give a closed-form expression
similar to Kasteleyn’s formula on two-dimensional lattices.
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A problem in optics is chosen in order to develop a general method for solving the eigenvalue
problem of a homogeneous integral equation with the help of the eigenfunctions of the associated
differential equation. The problem chosen is that of the modes of optical resonators with circular,
confocal mirrors which are given by the solutions of a homogeneous Fredholm integral equation
which can be derived from Kirchhoff ’s diffraction formula. This integral equation can be
converted into a hyperspheroidal differential equation supplemented by appropriate boundary
conditions. The solutions and eigenvalues of this differential equation are studied in detail for
both small and large values of a parameter called the Fresnel number. These eigenfunctions are
then used for the computation of the eigenvalues of the original integral equation which measure
the diffraction loss in the resonator. Throughout the same general perturbation method is used,
and our emphasis is on the solution of the general problem of solving the eigenvalue problem of the
homogeneous integral equation together with that of its related differential equation.

i. INTRODUCTION

Our objective in the following is to solve the eigenvalue
problem of a homogeneous integral equation with the help of
the solution of the eigenvalue problem of the corresponding
differential equation. The particular system of equations
that we choose is of relevance in the study of finite-dimen-
sional optical resonators, although the method of solution as
such is applicable to many other cases. We begin, therefore,
by recapitulating the physical motivation of these equations.

The reflection of light in optical resonators is accompa-
nied by diffraction at the edges of the finite-size mirrors.
Multiple reflection then leads to a homogeneous, locally co-
herent field distribution in the space between the mirrors.
The transverse eigenmodes of this field are called the modes
of the resonator.

In the following we consider a resonator consisting of
two identical confocal spherical mirrors. The segment radius
of the identical mirrors is a and the distance between their
centers is L = b, the length of the resonator, as shown in Fig.
1. The foci of the two mirrors coincide since for small spheri-
cal mirrors the focal length is half the radius of curvature.

We assume an arbitrary field on one of the mirrors and
determine the field on the other mirror after its first passage
through the resonator. The latter is then used to determine
the field on the first mirror after the second passage and so
on. After a sufficient number of passages, say g, the field
distribution u, stabilizes. We can use Kirchhoff’s formula in
order to express u, , | in terms of u,. Thus

U, =Lquds,

Here k = 27r/A, where A is the wavelength, R is the distance
of a point on one mirror from one on the other mirror, 8 is
the angle between R and the normal to the latter, and A4 is the
area of the mirror. After a sufficient number of passages the
field distribution on the mirrors stabilizes, and the field on

5-4%(1 +cos@le *R, (1)
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one differs from that on the other only by a factor measuring
the loss of intensity, i.e.,

u, = (1/p. (2)

Substituting this into (1) we obtain

v=y£des, 3)

where v describes the modes of the resonator and y deter-
mines both the damping and phase shift of the wave as it
passes through the resonator. For the evaluation of the inte-
gral we assume radiation consisting of plane waves that
propagate parallel to the optical axis. Then

ik a
Uy 1 (@) = e J: J; U, (ri,@;)

— ikR

R

Xe

(1 + cos 8)r, dr, dg,, 4)

where cos @ = b,/R,
R=[b]+7 +1; —2rr, coslp, — @,)]'7,
b a4 o)
4,=b— (b2 _ ,?)1/2, i=12

=T
i~ ~

L=b

FIG. 1. Arrangement and radii of confocal mirrors.
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For b /a large, we have 4, =~r?/2b and b,~R ~b so that
(14+5b,/R)=2and

R=b — (r,r,/b)cosip, — @,).

Then
2T

vryp,) = ?’J:J; K (rp@xrv@)r dr dgy, (6)
where (absorbing e ~** in y)

K (ry @it @) = ik /2 e 2o =) Y
The solutions of (6) have the form

vrg)=S,(re ", (8)
where n is an integer. Then

S, =7 [ KlrariS.rirydr, o)

0

where
K, (r,r) = (" 'k /b) J,(krry/b).

Equation (9) is 2 homogeneous linear integral equation of the
second kind with a linear and continuous kernel. The eigen-
functions associated with different eigenvalues are orthogo-
nal in the interval (0,a), i.e.,

f Su(Sum(Ardr =0 (I £m). (10)

Hence, correspondingly

2
f f Do 1@ W I dr dp =0,
(] (V]

if either n72k or m#1.

The set of all eigenfunctions S, () describes the field
and hence its intensity at the mirrors. Here, n describes the
order in the azimuthal direction and m that in the radial
direction. It is customary'? to write (9) in the form (setting

— - __m+1
rl—ay’r2—ax’7nm_l 7’)

1
X128, (€)= Yome f 128, (e) T (cxp)oo) 2 dy,
(¢
(11)

and ¢ = ka?/L, or more precisely, ¢/2 is called the Fresnel
number.

The existence of solutions of Eq. (3) has been investigat-
ed by several authors*™ for resonators consisting of plane-
parallel or spherical mirrors.

An important quantity is the diffraction loss P,,, de-
fined by

an =1~ |7nm|..2’ (12)

In the literature, e.g., in Ref. 6, P,,, is sometimes defined as
1 — |%um |% in this case the eigenvalue 7, is, of course, a
factor on the other side of the integral equation. It is impor-
tant to observe that the diffraction loss does not depend so
much on the specific geometry of the resonator as on the
parameter

¢=ka*/L =27N, N=d%*/LA, (13)

where N is called the Fresnel number. Resonators having the
same Fresnel number are similar as far as their diffraction
losses are concerned.
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Equation (11) is a Fredholm integral equation. As such
it can be shown to be equivalent to the following differential
equation:

d d n*—1
—(1=x}—+T,, —czxz——L]
[ dx ( ) dx x?
X x2S, (cx) =0, (14)
together with the boundary conditions
S, (%), —E—S,,,,I (x) finiteatx =0and 1. (15)
X

The formal integral equation ¥ = [y dx is compatible with
the differential equation Dy = E if the integral operator 7
commutes with the differential operator D, i.e., [D, /] = 0.1t
can be shown that this is the case for (11) and (14) provided
the conditions (15) are satisfied. Equation (14} is a general-
ized form of the prolate spheroidal wave equation.>”®

In the following we use the perturbation method ex-
plained, for instance, in Ref. 9 and applied to various types of
differential equations in Refs. 10-14 for the perturbative so-
lution of the hyperspheroidal differential equation (14). In
Sec. I we derive expansions for the solutions and eigenval-
ues for small values of the Fresnel parameter ¢ and in Sec. IIT
for large values of c. In particular, we point out certain char-
acteristics of these expansions which are similar to those of
corresponding expansions for the solutions of Mathieu’s
equation.®!! In Sec. IV we present numerical calculations of
the eigenvalues and demonstrate how both types of expan-
sions supplement each other beyond their immediate indi-
vidual domains of validity. In Sec. V we use the eigenfunc-
tions of Sec. III for the calculation of the eigenvalues of the
integral equation in the domain of small Fresnel parameters
¢, and in Sec. VI we use the eigenfunctions of Sec. IV for the
calculation of these eigenvalues in the domain of large values
of c.

Il. SOLUTION OF THE HYPERSPHEROIDAL
DIFFERENTIAL EQUATION FOR SMALL VALUES OF
THE FRESNEL NUMBER

The approximate behavior of the eigenvalues I, of
{14) can be found by considering a domain of the variable x in
which the solutions can be approximated by normalized
functions. Thus, setting

xl/ZS(x) =x"+ 1/2P(x),

22— 1=y, (16)
k=4m—n), k=0,12,.,

so that
kk+n+1)=1[ — n(n +2)+ mm +2)], (17)

Eq. (14) becomes
(1= )P ") + [n— (n + 2y]P"(y)
+ [k(k+n+1) = Ym(m +2) + }T" — 1P )
- =(c/8)y + VP ). (18)

Comparing this with the differential equation of Jacobi poly-
nomials P'*#), i.e.,

(1= PE2" () + [B—a —(a+ B+ 2p1PEP"(y)
+k(k+a+B+ )PPy =0, (19)
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for a = 0 and 8 = n, we obtain
r,, —3~mm+2).

Thus

I, —3i=mm+2)—c4, (20)
where 4 = 0(c°), and

Spm (X) = x"P 2 (2x% — 1) + O(c?). (21)
We can now rewrite (18) in the form

DYP(y)=(c/8)24 +y + 1P (), (22)
where

D)= (l—yz)——+ [n—(n+2lV] +k(k+1)

(23)
Using the recurrence relation of Jacobi polynomials, we
have

R =(c*/8)24 +y + 1)PL"y)
= (/8){ [k.k + 11PY7, + [kk 1 PY™
+ [k —11P0™ 1, (24)
where

ek 4 1] = 2k + 1k +n+1)

Rk+n+1)2k+n+2)’

2

[kk]= = 1+ 24,
(2k+n)2k+n+2) tit
(25)
ek —1] = — 2klk+n) (k,n not both ).
2k + n)2k +n + 1)
Now,
DY ,=DP+d2k+d+n+1)
and
D(l:')+ P (l?'-:'-)d =0,
so that
DPPOV /L —d2k+d+n+ 1)])=P0", . (26)

Thus, in order to remove a term aP®",, d #0 from the

right-hand side of (22) and hence from (24), a term {a/
[—d(2k+n+1+d)]} PP, mustbeaddedto P, Tothe
same order of approximation the coefficient of P> in R Y
must be equated to zero and yields the appropriate value of
4. This type of perturbation method has been discussed ex-
tensively in previous applications; we therefore refer to the
literature, Refs. 9-14, for further details. Calculating in this
way contributions up to and including those of the fourth
order, we obtain

m+2) 26

5“_(_ (m—n+2Pm+n+2y7 4 (m
(m + 2)}(m + 1){m + 3)
(m—n+2P2m+n+27

—n’m + n)2)
m3¥m + l)im — 1)

+c_6[ n? { (m — n)’(m +n)2)]

2lmm+2(m+ 1)\  (m+2fm+3)m+4)  m*m—1)m—2)

+c_8[_(m—n-i—Z)z(m+n+2)2{i (m—n+4°m+n+47 4 4n? )
210 (m+2P2m+1)m+3) \2° (m+3m+2m+4m+5)  (m+2)°'mim+ 47

(m—nPfm+n?(1 (m—n—2Pm+n—2p

m3m — 1)m + 1)\2° (m —

12m(m — 3)m — 212

4n? )
mim — 2)%(m + 2)?

_ 1 ((m—n+2Pm+n+2)} (m-—n)z(m+n)2)
(m+ 14\ (m+2%m+3) (m — im*
_m—n+2Pm+n+2P (m—nfm+np 10
( (m+2Pm+1)m+3)  (m+ Umm— 1))} +07) 27)

and
P(y)=P(O)+P(l)+P(2)+ ven

_pongy 4 ECf _m=n+2m+n+2),

16n®

(On) (m — n)m + n) ©,n) (m
)+ =l b pon )4 £

—n+2)fm+n+2

((m —n+4)m+n+4 PO () —
(m + 3f(m + 4)

(m—n—2)m+n—

(m — 2)fm — 1)°

+ 2 pe, )| +01e

If, in evaluating these expressions, terms P " arise with
1 <0, these have to be put equal to zero since Jacobi polyno-
mials are defined only for />0. It might seem that (28) be-
comes singular and hence undefined for certain values of m.
However, this is not the case. As an example we consider

m—n—2)m+n —2)P(0,,,
(m — 2)(m — 1)
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m(m + 2)*(m + 4)

m2(m + 2) (m + 2% m + 1)
©,n) (m — n)im + n)( 16n* pPon
Pis ‘) + mim+1) \(m — 2)m*m + 2) )

(28)

|
This term arises only if k = (m — n)/2>2, i.e., m>4 +n,
n=20,1,2,...Incase k =2 we have

1  poem_ pp"

m—2m—17" °  (n+2n+3P
and there is no problem.

Looking at (27) we observe that the higher-order coeffi-
cients of this expansion are singular for integral values of m.
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Thus the coefficient of ¢* contains 1/(m? — 1), that of ¢® con-
tains the factors 1/(m? — 1), 1/{m* — 2), and so on. This as-
pect has been ignored by Heurtley' and others, but has its
analogy in the study of similar solutions of Mathieu’s equa-
tion.®!! A simple justifiable recipe for the evaluation of the
expansion in these cases says the following: if such a singular
term is encountered, it has to be ignored, the resulting expan-
sion being the same as that calculated specifically for the
singular value of m. As an example we consider the case
n=m=1.Since Py" = 1and

POYy) =illa —B)+yla+B+2)],

we have
POV =43y —1),
or
y=1[2P" - POY]. 29)

Hence (24) yields
R =(*/8)24 +y + )PEY

=(c*/8){(24 + POV —3P ). (30)
Proceeding now in our standard way®'* we obtain
Fhle)=3+1+37—67%* +0(cf). (31)

As a further example we write down explicitly the above
expansion for the fundamental mode:

Soolx) = P5(p) — (c*/16)P P p)

+ (c*/1152)POy) + O (cF), (32)

in agreement with the result of Heurtley.'

So far we have derived only one solution of (22) and
hence of the original differential equation. A second, linearly
independent solution can be obtained by choosing for the
zeroth-order approximation that solution of Jacobi’s equa-
tion which together with the Jacobi polynomial forms a lin-
early independent pair. Alternatively, one can exploit the
symmetry properties of (22) and obtain this second solution
by replacing in the first mby —m —2 and c by —c. Itis
easily verified that these replacements leave the eigenvalue
expansion unchanged.

Our expansions for small values of the Fresnel number ¢
are certainly convergent in a domain |¢| < const#0. This
convergence can be proved with the help of a theorem stated
by Meixner and Schifke.® The determination of the exact
radius of convergence is complicated and is therefore not
considered here in more detail. However, our expansions can
also be used in the sense of asymptotic expansions beyond
this radius of convergence. In this connection we observe
that for m®>— w0, c finite,

I,,lc)omm+2)+ 3+ /2, {33)
and it can, in fact, be shown that our expansions are asymp-
totic expansions for large values of m.

Finally, we write out the particular solution of (14) for
small values of ¢ and valid in the domain 0<x<1, which

satisfies the boundary conditions (15). This is (apart from a
normalization constant)
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Sunte) = (PP = 1) +3, (5)

L lkk+d],
X
d=z_;d(2k+n+l+d)

d %0

X P25~ 1), (34
where [k,k +d]; are the appropriate coefficients and
k= Ym — n).

Heurtley' obtained solutions of the hyperspheroidal

wave equation in terms of the Zernike polynomials R 7, (x},
which are related to Jacobi polynomials; thus

R(x) = X"P (26— 1).

Slepian® obtained expansions of the solutions in terms of
polynomials

Ry, x)=F(—nn+ N+ LN + 1;x).
These are related to Jacobi polynomials by the relation

Ruab = ("~ ) e - )

Again we find agreement with our results by observing that
Ry x) = x'728,,, (x),

with
N=n, fi=\im—n)

1ll. SOLUTION OF THE HYPERSPHEROIDAL

DIFFERENTIAL EQUATION FOR LARGE VALUES OF
THE FRESNEL NUMBER

As before, we begin with the determination of the ap-
proximate behavior of the eigenvalues I" = I',,,,, (c) of (14) for
large values of ¢. To this end we convert (14) to its normal
form by setting

x128 (x) = (1 — x})~V?2Y (x), (35)
so that
Y"(x)+ { [ — *x* — (n* — )/x* + 11/(1 — x¥)

—x/(1 — ¥} Y (x) = 0. (36)

Expanding the denominators of the coefficient of ¥ {x) in ris-
ing powers of x, setting z = x(2¢)'/2 and considering ¢— oo,
we obtain

Yo+ {4-11+1/2-121Y(5)=0,

where

A=(1/2c)\"+35—n? (37)
and

W+ )=n*—1} (38)
The solution

Y(z) =2'"'e” V@ (a,b;32%), (39)
where

a= —}[4—-(+3]), b=1+} (40)

and @ is the confluent hypergeometric function, exists for
z— oo and hence is normalized provided

a= —k k=0,12,... (41)
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We define a number m by the relation

k=1Um —n). : {42)
The behavior of the eigenvalues now follows from {41) to-
gether with (40) and (42). Thus

I,,.(c)=2cm+ 1)+ n*—5+A4, (43)

where 4 = O(c°).

We now use the same general iteration technique in or-
der to derive large — ¢ asymptotic expansions for the solu-
tions and eigenvalues of the hyperspheroidal equation. Set-
ting

S (x) = x"e ~ /3T (x) . (44)
in {14), changing the variable to
z=cx% (45)
and replacing I” by {43), the equation can be written as
DT (z) = (1/4¢){42 T (z) + [4z(n + 2) — 422]1 T (z)
+ [2(n + )= 4 — 2z(n + 2) + 21T (2)},
(46)
where
D‘,{"Eziz—+(n+1;z)i+k (47)
dz? dz
and
k=4m

To zeroth order the solutlon T=T90f(46)isa generalized

4, e
ey Loz l

T9O=[L ',:(Z)

Using well-known recurrence relations for these func-
tions, we can rewrite the right-hand side of (46) for T= T'®
as

+(kk—2)L%_,

(k,k +2L%. .} {48)

RY = (1/40){(kk)Lk

where
kk)= —2klk+n+1)—nn+1 -4,

(kk—2)={(n+k)n+k—1), (49)
tkk + 2) =k + 1)(k + 2.

Since

and
Dk+dL Z+d =0,

we have

DLy a/l=d) =L},

Thus a term aL §  ;/ d #0, on the right-hand side of
(46) can be removed by adding to T the new contribution
— (a/d )L}, 4 The equation determining 4 and hence the
eigenvalue I',,,, is again obtained by equating to zero the sum
of all contributions involving L }. Proceeding in the familiar
way,>* we obtain

m—n m+n+2)+2n+§] +(1/27c)[(m + n)m 4+ n — 2)m — n)im —n — 2)

—n—2)m-1)

—n+4)m+ n + 4)m + 3)1 + (1/2"*){(m + n)m — n)m +n — 2)(m — n — 2)

—m—n+42)m+n+2)m-—n+4)

(m—n+2P%m+n+24m—n+4m+n+4721} + 0™ (51)

L,(c)=2c{m + 1) — }[(m
—(m .—rn+2){m+n+2)(m — 1+ 4)m + n+ 4)] +(1/28c2)[(m+n)(m+n-2)(m—n)(m
—(m—n+2m+n+2)m
X[2°%m — 1P +(m+n—4)m—n—4)(m+n—6)m—n—6)]
X(m+n+4)[2°%m+ 37+ (m—n+6)m+n+6)m—n-+8)(m-+n+ 8] —2[(m+nm+n—27
X(m — nfm —n — 2 —

and

TE)=TO+TV4+ 794
=L%z)+ (1/32){(m +n)m +n—2)L} _,(z) —

+(172"){(m —n+2)m —n 4+ 4)m —n + 6)m —n + 8L}, 4(2)

m—n+2(m—n+4L:, ,2)}

—2m—n+2m—n+4m+3)L;_ ,()

+2%m +n)m +n—2)m—DLE &)+ (m+nfm+n—2)(m+n—4m+n—6L; 4@} +0™). (52)

For the fundamental mode, (52) implies

Soolx) = e~ VA= Lyfex?) — (1/4c)Lylex?) + (1/16¢%) [ 3L fex?) —

6L,(ex)]

+ (1/64¢%)[ — 15Lgfcx?) + 48L {cx?) — S3L(cx?)] + O (¢ Y)]. (53)

These solutions are rapidly decreasing expansions pro-
vided |x| <c. The particular solution of the hyperspheroidal
differential equation {14) which satisfies the boundary condi-
tions (15) and represents an asymptotic expansion for large
values of ¢ valid in the domain 0<x<c~!/* (the upper bound
being obtained as in Ref. 13} is therefore (apart from an over-
all normalization constant)
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r

S,,m(x)=x"e““/2""[ {ex?) + z 22"0"

P
x § ki liged) 69
(1/297= ~p
=0
where [k,k +j],, are the appropriate coefficients and
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k = i{(m — n). As before, a second, linearly independent so-
lution is obtained by the replacements m— —m — 2,
¢~ — ¢, which again leave the expansion of the eigenvalue
unchanged.

It may be noted that Heurtley' obtains the solution by
solving a recurrence relation. His results agree with ours.
Slepian,” on the other hand, gives the solution in terms of
Laguerre polynomials but does not determine the expansion
coefficients. However, he also investigates the WKB-like so-
lutions in adjoining domains of validity, which we shall not
discuss in the present investigation. ‘

IV. COMPUTATION OF EIGENVALUES T, (c) OF THE
HYPERSPHEROIDAL DIFFERENTIAL EQUATION

We now use (27) for the calculation of I, (c) for small
values of ¢ and similarly (51) for the calculation of I",,,, (¢) for
large values of c. Elsewhere' it has been shown that the
perturbation procedure can be formulated in such a way that
many more higher-order terms of these expansions can be
obtained by an algebraic computer calculation. In the pres-
ent investigation we restrict ourselves to the terms given in
the above expansions. This implies, of course, that we can
use these expansions reliably only for such values of ¢, m, and
n, for which successive terms decrease sufficiently rapidly.
Moreover, since the use of complicated convergence factor
methods or Borel summation techniques is beyond the scope
of the present considerations, we employ the well-known old
Poincaré® recipe of terminating an asymptotic expansion
with terms which are alternately positive and negative at the
term preceding the least term and taking half the least term.
If, on the other hand, the terms do not alternate in sign, the
series is terminated at the least term. Except for borderline
cases these considerations are unnecessary here in view of
the rapid falloff of successive terms, e.g., I';,(2) = 8.75 + 2

+0.1—-0.00844 4 -.-.

In Table I we give eigenvalues calculated in this way for
relatively small values of ¢ and in Table II eigenvalues calcu-
lated for relatively large values of c. In Fig. 2 we demonstrate
the matching of both types of expansions in the case of an
eigenvalue for which comparison values are available from
the work of Slepian.?

V. EIGENVALUES OF THE INTEGRAL EQUATION FOR
SMALL VALUES OF ¢

The kernel of our original integral equation (11) does not
possess a step function as in many well-known problems in
quantum mechanics. As a consequence no simple relation-
ship exists between the eigenvalues of the integral equation
and the eigenvalues of the corresponding differential equa-
tion (for literature on this connection see Ref. 16). However,
it is possible to calculate the eigenvalues ¥,,, (c) of the inte-
gral equation from a knowledge of the eigenfunctions S,,,,, {x)
of the differential equation. This is the procedure we follow
here.

We can rewrite (11) as

X'/ (%)
Yam €)= ——7 3 . (55)
cfoy Snm (y)"n (cxy)(xy) dy x=0
For small values of ¢, S,,,,; (x) is given by (34) or, explicit-
ly, by
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TABLE 1. Eigenvalues I, {c) of the differential equation obtained from
(27) for small values of c.

c T Iy o T

0.1 0.755 8.755 24.755 48.755

0.5 0.874 8.875 24.875 48875

1 1.240 9.256 25.251 49.250

2 2.586 10.841 26.772 50.760

3 4471 13.540 29.329 53.286

4 e 17.550 32.940 56.830

5 23,203 37.713 61.467

6 30.800 43,714 67.200

7 vee vee 74.083

8 82.172

9 91.528
4 ry, I Iy Iy, Iy
0.1 3.756 15.755 35.755 63.755 99.755
0.5 3.916 15.883 35.878 63.877 99.876
1 4412 16.284 36.265 64.258 100.255
2 6.342 17.909 37.820 65.789 101.775
3 9.375 20.682 40.444 68.359 104.320
5 ces 30.101 49.115 76.743 112.567
6 37.062 55.318 82.647  118.328

10 . 95.312 119.262 153.315
4 Iy I Iy Iy Tii0
0.1 8.757 24.755 48.755 80.755 120.755
0.5 8.937 24.896 48.885 80.881 120.879
1 9.498 25.334 49,292 81.275 121.266
2 11.712 27.087 50.923 82.854 122.820
3 15.310 30.018 53.655 85.498 125.417
5 26.035 39.475 62.524 94.055 133.801
6 PN 49.045 68.732 100.025 139.801

10 e oo 136.143 174.568
c Iy Iy Iy T

0.1 15.758 35.756 63.756 99.755

0.5 15950 35.907 63.892 99.886

1 16.549 36.378 64.322 100.296

2 18.928 38.261 66.037 101.934

3 22.842 41.392 68.903 104.672

5 34916 51.348 84.489 113.487

6 42.822 58.138 84.489 119.596

10 82.416 96.756 122.187 155.913

S (%) = x"{ PO + Ha, PP, + a,PR"))
+ M@ Py + a PRV, +asP Y,
+asP ;) + 0(c9), (56)
where P> = P>" (2x? — 1) and
a,= —(m—n+2)fm+n+2)/16(m + 1)m + 2)%,
a, = {m — n)(m + n)/16{m + 2)m?,
m—n+2m+n+2m—n+4m+n+4
512(m + 2)%(m + 1)(m + 3)*(m + 4)
_ (m — n + 2)(m 4+ n + 2)n?

3 »

a, = ) (57)
32(m + 2)%(m + Vym?*(m + 4)
. (m — n)(m + n)n?
ST R2mm 4+ Ym —2m +2)°
a = (m—njm+n)m—n—2)m-+n-—2)
¢ 512m*m + 1)im — 2)(m — 17
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TABLE II. Eigenvalues I',,, (c) of the differential equation obtained from
(51) for large values of c.

< Iy, Iy, Lo, Tos Ty
4 6.58 16.92

5 8.62 23.40

6 10.65 29.69 e

7 12.66 35.88 53.01

8 14.68 42.01 63.61

9 16.69 48.11
10 18.69 54.19 84.85 108.18 124.16
15 28.71 84.40 135.31 180.82 220.17
20 38.72 114.50 185.88 251.75 312.74
< ry, Iy Is Iy Iy

5 17.330 “es

7 25.474 45.92

8 29.516 54.21
10 37.570 70.59 ves NN e
15 57.637 111.03 159.75 201.92 237.94
20 77.667 151.23 220.05 283.65 341.51
¢ Iy r,, Iy Iy

6 32.04

8 44.26 ves vee

10 56.38 86.75 110.75 e

15 86.52 137.53 183.15 222.65
20 116.58 187.87 254.20 315.07

For J, (cxy) we substitute its series expansion, i.e.,
J,(exy) = [g(cxy)"/n!] {14 O((exy))}.
Now,
PO — 1) =(— 1)k + n)l/k . (58)

Inserting these expressions into (55) we obtain

Yam C)

(— )5k +n)/k!nl + O(c?)

R[5y PN — dy 4+ 0()]

In the integral in the denominator we set
22— 1=t
Then

1
I ___f y2n + IP(’?,n)(2y2 _ l)dy
0

_ 1

- 2n+2

f l (t+ 1)"P ™t )dt

=[172(n + D]} Fy{ — kan + k + 1,1;1,n 4 2;1),
(60)

on using a formula of Ref. 17. The expression for the eigen-
value therefore becomes (for k>0, n>0)

Yamle) = [(— 1)2" (0 + 1)/c"+]
{(k + n)/k! + O(c})}
P —kn+k+ LLn+21)+0(c3)}
Taking into account the higher-order terms, this is

Yam(€) = [(— 1)27* (n 4 1)/c"* (4 /B), (61)

TABLE I1I. Eigenvalues ¥,,, and diffraction loss factor ¥, obtained from
(61){63) for small values of ¢; comparison values taken from Slepian.?

(59)
30+
Foo () T i
25t
20
).
t’ ll
15[ "
0} Ve
s
o«
5)
0= 5 o —3
c
FIG. 2. Eigenvalues I'y(c) obtained from the expansion for small ¢ ( )
and from the expansion for large ¢ (- - - - - ). Exact values from Slepian.?
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¢ Yoo Yo Ago Slepian
0.1 200125 —1 249688 —3 2496 8775 — 3
0.2 1.00250 —1 995016 — 3 e

0.3 6.70421 O 222487 -2

0.4 505011 O 392101 -2 v

0.5 406272 O 6.058 52 —2 6.058 5348 —2
0.6 340871 O 8.60637 —2 cee

0.7 294524 O 1.15281 —1

0.8 260089 O 147828 — 1

0.9 233599 O 1.83256 — 1 cee

1 212674 O 221091 —1 22111487 -1
1.5 152671 O 429032 — 1 42951906 — 1
2 126392 0 6.259 81 —1 62963045 — 1
25 1.13969 O 7.69890 —1

3 1.08865 O 843774 — 1 8.8705036 — 1
35 1.08353 O 8.51760 — 1 e

4 1.11136 O 8.09637 — 1

4.5 1.16550 O 7.36163 — 1

5 1.24250 O 6.47750 — 1

< 1 e 410 Slepian

0.1 8.00445 —2 1.56076 — 6

0.2 2.00445 —2 248891 -5

0.3 8.93343 1 1.25303 -4

0.4 504462 — 1 3.92955 —4 cee

0.5 324472 — 1 9.498 27 — 4 9.4982658 — 1
0.6 226701 —1 194568 — 3 cen

0.7 1.67765 — 1 3.55304 —3

0.8 1.29516 — 1 596147 —3

0.9 1.03300 —1 9.37121 ~3 e

1 845563 O 1.398 65 —2 1.398 6168 —2
1.5 402515 O 6.17213 -2

2 248916 O 1.61397 —1 1.6123183 —1
2.5 1.79431 O 3.10603 —1 cee

3 143394 O 4.86341 — 1 4.8326866 — 1
35 1.23443 0 6.56241 — 1 e

4 1.12329 © 792531 —1 7.847 3505 — 1
4.5 10658 O 8.80244 -1 cen

5 1.04389 O 9.176 82 —1

6 1.04389 O 8.74969 — 1

H. J. W. Muller-Kirsten and E. Sattel
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where
=(k+n)!_cz[a (k+n+ 1) (k—1+n)!]
k! Yok 1) (k — 1)!
(k+ 1+ n)t
(k + 1)
(k—2+n)!
ag
(k —2)!

A

2

(k+2+n)
(k +2)

_a, (k—1+n)
(k— 1)
and, for k>0, >0,
B =F(k)+la,F(k+ 1)+ aF(k—1)]

+tlaFlk+2)+aFik+1)

+aF(k — 1)+ agF(k —2)] + O(c), (63)
where F (kK )=,F,(—kn+k+ 1, 1; 1, n + 2;1).

If in the &valuation of these terms a contribution arises
which is infinite, then our earlier considerations apply [see
comments following (28)] and it has to be ignored (i.e., a
separate calculation is necessary). In particular, we have

2 [1—a+axct +0(
Vool c [ 14+0(c% } ’ (64

with a, = — 0.062 50, a; = 0.000 87, a, = 0.

In Table III we show some eigenvalues calculated in this
way. The quantity 1/77,, [see (12)], which is a measure of the
diffraction loss, is also given and compared with values ob-
tained by Slepian.?

4

+c [03

] + 0(c%), (62)

VL. EIGENVALUES OF THE INTEGRAL EQUATION FOR
LARGE VALUES OF ¢

In this case we again proceed as before except that now
we use (54) for S,,,, (x), which is valid for 0<x <¢~ /4. Then

TABLE IV. Eigenvalues y,,, and diffraction loss factor ¥,,2 obtained from
(71) for large values of ¢; comparison values taken from Slepian.?

c Yoo Yoo Ao Slepian
20 1.000 02 0.999 96 ‘e
10 1.003 48 0.993 08 0.999 999 57
9 1.005 76 0.988 58 pes
8 1.009 58 0.981 11
7 1.000 72 0.998 56
6 1.004 08 0.991 89
5 1.013 12 0.974 26
4 1.035 90 0.931 89 0.974 95117
3.5 1.056 80 0.895 40 e
3 1.089 98 0.84171 0.887 050 36
2.5 1.142 69 0.765 84 bes
2 1.22976 0.661 24 0.629 304 5
x2S, (x)

—1/4

— Ynmc[f yn + I/Ze — (1/2)cy2[L z(cyZ)
0

+OE W, e dy+ [ ()]

The contribution §!_... would have to be calculated with the
help of a new class of solutions, dubbed WKB-like in pre-
vious investigations.® However, these solutions are exponen-
tially decreasing. Moreover, we can argue (as in many other
cases dealing with similar integrals'®'?) that the main contri-
bution to the entire integral comes from the domain around
the lower limit, and hence we integrate the first contribution
over the whole domain of integration, thereby approximat-
ing the second integral effectively by the integral over the
extended domain. It will be seen that our numerical results
justify this procedure a posteriori. Thus,

|
Vamle) = e” " (Liler) + Ok ) ] . (63
e+ /25" + e~ Ly + 0] 2
With the change of variable
t=cy’,
we have

1
IEJ y2n + 1e—(1/2)cy2L z(cyZ)dy —
(V]

2cn+l

ft”e'“”"L n(¢)dt
(4]

~ 20,,1+1 J;m t7e LR (t)dr = cnil n+ k);i'— 1)<2" ’ 66)
using
f: e-eeLgfe = TELIL T
Inserting the result into (65) and using
Li0)=(n+k)/k!nl, (67)
we obtain
Yum(€) = [(n + EW/nk!+ O™ )/ [(n + kW — 1)*/nk! + O (c™Y)]. (68)

Thus for ¢ — o the eigenvalues ¥,,, approach 1, and the diffraction loss

an =l_1/|7nm|2

2507 J. Math. Phys., Vol. 26, No. 10, October 1985
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approaches zero in agreement with what one expects on physical grounds for infinitely large mirrors. The calculation of

higher-order contributions is difficuit.
We have [with L =L }(cx?]

Sm(x)=X"e"“’2’°"2[L§Z +(Ve)fa, Li_, +a L}, ,]} +(1/02){‘13L2+4 +a Ly, +alli_;+alli .}
+ (/oL 6 +asl}a+ +o0 +apli_¢) +0(1/cY], (69)

where

ay=hm+nm+n+2), a,= —4im—n+2)m—n+4,

a=(172"m—n+2m—n+4)m—n+6m-—n+8), a,= —(1/2%m —n+ 2)im — n + 4(m + 3),

as=(172%m+nfm+n—2)m —1), ag=(1/2"Ym +n)im +n—2)m +n—4)(m +n—6),

Gy = —(1/2 . 3)m — n + 2)(m — n + 4)m — n + 6)m — n + 8)(m — n + 10)m — n + 12),

ag=(1/2"Ym —n 4+ 2)m — n + 4)m — n + 6)(m — n + 8)(m + 4), (70)

ag= —(1/2"\m —n+2)m —n+4){2%m + 3>+ (m —n+ 6)m — n + 8)m + n + 8)(m + n + 6)
+2[m+nm+n—2)m—n)m—n—2)—(m—n+2)m—n+4)m+n+2)m+n+4)]},

a10=(1/2'm + n)im +n — 2){2°(m — 1> + (m + n — 4)m + n — 6)m — n — 4)m — n — 6)

—2[m+nm+n—-2)m—nfm—n—-2)—(m—n+2m—n+4)m-+n+2)m+n+41j,
a,, ={1/2m+n)im+n—2)m+n—4m-+n—6jim—2),
ay, = (1/2'% . 3)(m + n)m + n — 2)(m + n — 4)(m + n — 6){m + n — 8)(m + n — 10).
We then find with the approximations described at the beginning

Yam =C/(C+ D), (71)
where
C=(n+k)¥+_1_[a1(k—2+n)! az(k+2+n)!] _}_[a3(k+4+'n)! adk + 2+ n)l
k! c (k —2)! (k+2) 2 (k + 4) (k+2)!
ask—24+-n)!  agk—4+n) 1Jafk+6+n)  agdk+4+n)  agk+ 2+ n)
+ —
(k—2) (k — 4\ o’ (k + 6)t (k + 4)! (k+2)
+ alo(k—2+n)! au(k——4+n)! alz(k"' 6+n)!] +0(c__4}
(k—2) (k—4) (k — 6)!
and
1 * i3 n 1 n n 1 n n n n
D= - Py j t"e~ 1/ {Lk(t)+'c_[alLk~2 +aLiis] +z§ [asli s tali s +asli_,+adli_,]

+(1/)[a;L % 6 +agli s +asli 2 +ali o +ayLi_s+apli o]+ 0 *)ar

These integrals have to be evaluated individually. This
has been done for n = 0, k = 0. The eigenvalues yy,(c) have
then been calculated with the prescription of Poincaré'®
mentioned earlier. The results are shown in Table IV. The
comparison values are again taken from the work of Sle-
pian.”

We have thus shown how the eigenvalues of the original
homogeneous integral equation can be calculated with the
help of the eigenfunctions of the corresponding differential
equation. Of course, for many numerical calculations it is
more practical to obtain the eigenvalues of the integral equa-
tion by a numerical computer calculation.

Finally we mention for the sake of completeness that
some authors use a different enumeration of resonator
modes. Thus the modes (¥, M ) of Fox and Li*® correspond to
our modes {n, (m — n)/2).
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First integrals for the modified Emden equation§ + a(f)g+g" =0

P.G. L. Leach
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2001, South Africa
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It is shown that the modified Emden equation § + a(t }g + ¢” = O possesses first integrals for
functions a(t ) other than k¢ ~'. The function aft) is obtained explicitly in the case n = 3 and
parametrically for other n(7£2). The case n = 2 is seen to be particularly difficult to solve.

I. INTRODUCTION
The Emden equation of index n,

%)
£ A\ dE
6(0)=1, 6'0)=0, £>0, (1.1)
arises in the study of equilibrium configurations of a spheri-
cal gas cloud acting under the mutual attractions of its mole-
cules and subject to the laws of thermodynamics. The index
n is given by
—c)/le, —¢,), (1.2)
where ¢, is the specific heat at constant volume, c, is the
specific heat at constant pressure, and ¢ is the assumed con-
stant in the relationship between heat input dQ and tempera-
ture change 47, i.e.,
dQ=cdT. (1.3)

Chandrasekhar® discusses the equation extensively and re-
ports complete solutions in the cases » = 0,1,5.

The Emden equation may also be considered as an equa-
tion in dynamics, viz.,

§+(2/t)q4+4¢" =0, (1.4)
which represents in general an anharmonic oscillator subject
to damping dependent upon the velocity. In the case n = 5,
Logan? illustrates the use of Noether’s theorem with point
transformations by applying the theorem to the variational
integral

J= f ( q——iq)dt, (1.5)

the integrand of which is a Lagrangian from which (1.4) may
be obtained. He obtained the first integral

I=11%°+ 1% +41%q. (1.6)
This same first integral was obtained by Sarlet and Bahar® by

introducing a time-dependent integrating factor. They ex-
tended their treatment to the more general equation

§+B()g+alt)g™=0, m#*—1 (1.7)
and found that the first integral

1=(2 + 22 g exp (2f prrar)
X[C+C4fexp(—ft'ﬂ(t”)dt”)dt’]

n=(c,

2510 J. Math. Phys. 26 (10), October 1985
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~cagess ([ Burar) (18)

exists when a(z) and S () satisfy the relation
—C4fexp( f Bt")dt )dt =C (1.9)

and C and C, are constants. Furthermore, they showed that
the result was equivalent to using the gauge-invariant
Noether approach. The extension to the gauge-variant
Noether approach was mentioned, but the calculations and
integral were not given.

Moreira,* as an example of the application of the Lew-
is—Leach® direct method to Newtonian equations of motion,
studied the equation

a—z/(m+3)exp(_

g+altlg+q" =0. (1.10)
He found the first integral
I=exp (mf aft’) dt’){qz+aqé(2—m)
+ [2/(n + 1)1 ¢"* ' + ) ¢*(m — 2)[(m — 1)a® + &},
(1.11)

where m = 2(n + 1)/(n + 3), provided that a(t ) satisfied the
differential equation

@+ (3m —2)ac +a*>mim — 1)=0 (1.12)
He did not provide the general solution of (1.12), but gave
two particular solutions, viz.,

alt)=2/mt, aft)=[m—1)]"". (1.13)

Feix and Lewis,® in their study of first integrals for dissi-
pative nonlinear systems using rescaling (the equivalent in
Newtonian mechanics of generalized canonical transforma-
tions in Hamiltonian mechanics’), examined the equation

c?¢ (x,t )

X+8(tp + ——= (1.14)
As an example they treat the case in which
Sxt)=wt)[x"* Y/ m+1)], m#—1. (1.15)

However, they specified £ () to be proportional to ¢ ~*

In this note we intend to apply Noether’s theorem to an
equation of Emden type. It is necessary to decide which of
the various forms of the equation given above is to be used.
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Our choice is that of Moreira (1.10). The reason for this is as
follows. Consider the equation

k+B(t)+yit"=0, (1.16)
which was discussed in Refs. 3 and 6. Under the transforma-
tion

(x> X,TX =x,T=f(t)), (1.17)
(1.17) becomes

X"+ (ff2+8f X +9f X" =0, (1.18)
where prime denotes d /dT. If we set

r=UF, aTe)=FF7+8"", (1.19)

we have an equation of type (1.10). Should it happen that (¢ )
is negative we could replace the first of (1.19) by y = — f ~2
to keep [ real. If y(t) has zeros, the transformation (1.17)
would strictly apply to the interval between successive zeros
and matching of the results for successive intervals would
have to be undertaken.

One may wonder what relevance this has to the original
Emden equation (1.1). This equation comes from the equa-
tion of equilibrium’

14240

rPdr\p dr
where 7 is the radial variable in the gaseous sphere, p is the

density of the gas, P is its pressure, and G is the universal
gravitational constant, by means of the substitutions

p=A0", P=Kitn+lrgn+1 (1.21)
and suitable rescaling. The density and pressure are related
by

P=Kp"+tin, (1.22)
If we imagine that the constant X is replaced by a function of

r, we obtain an equation of type (1.10) in terms of a variable o,
where

= —47Gp, (1.20)
)

P=K, 0"tV o=firp. (1.23)
1. APPLICATION OF NOETHER'S THEOREM
Following Sarlet and Cantrijn,® if the functional
2,
7= Lagnar, 2.1)
o

where L is regular in ¢, admits a gauge-variant symmetry
generated by

a a

G=717— —_,
S

where 7 = 7{g,q,) and § = £ (¢,9,?), there exists a first inte-

gral

(2.2)

dL . .
I= [LT % - qr)] —flggt), (2.3)
where f, 7, and £ are determined by the equations
L ,
Lo (X )T, 2.4
dg  9dq \d4 9q/ 94
aL JL (87' . 67')
= RN S BA z.
"o e TGty

2511 J. Math. Phys., Vol. 26, No. 10, October 1985

+ S E i (2 )

dq | ot dg ot dq
a . . df
= 4 42, 2.5
a " 15 2.3
Since, further,
. ar
§—gr=—g—, (2.6)
9q
where
&L
=1, 2.7
% g (2.7)
we may without loss of generality set 7 = 0 and do so.
The equation of motion we study is
g+altlg+q =0, n#1,0,1. (2.8)

(The cases n = 0,1 are excluded since they are linear systems
and have already been treated elsewhere.® For the case
n = — 1 see the Appendix.) A Lagrangian for this equation
is

Liggt)=3A40)—[A@)Vin+1)]g""", (2.9)
where
A(t)=exp (J.‘ alt')dt ') . (2.10)

As the first integrals obtained in Refs. 2, 3, 4, and 6 were
quadratic in ¢, we look for one of the same type. From (2.6) it
is evident that

E=algt)g+blgt). (2.11)
From (2.3) we see that the first integral is
I=A4laqg+b)—~f. (2.12)

Substituting for L, £, and 7 into (2.4) and integrating with
respect to ¢ we see that

f=1a4¢ + clg.t) (2.13)
and (2.12) becomes
I=1a4¢* + bAdg—c. 2.14)

Substituting for L, &, 7, and f into (2.5) and equating the
coefficients of like powers of ¢ to zero, we have

da 1 @
¢) A—=——(4a), (2.15)
d 2 Jq
. da b 19
) A— 4+ A—=——"|(ad), 2.16
&) s %0~ 2 é”( ) (2.16)
ab dc
") —adg" + A =2, 2.17
@) ¢ +A=- 3 (2.17)
dc
P°) —Abg==. 2.18
@) 7= (2.18)
From (2.15), (2.16), and (2.17) in turn we find that
a=oft), (2.19)
b= —?}(&A—a,«i)q—y(:), (2.20)
O,Aqn+l 1 d[l . . ] 2
=21 _ 4% |64 —04
¢ P A At L
— Ayg — 8(t). (2.21)
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Substitution for b and c into (2.18) gives the consistency con-
dition
qn +1 d [
+ —_——
n+1 E( ) 4 dt

+ —(Ar)q +—

i[i(b'A —od )” q
(aA —0A)"t +Ayg" +6=0.

(2.22)
Since n# — 1,0,1, we distinguish two cases.
(1) n = 2: Equating the coefficients of like powers of g to
zero, we have

(¢ %%(0,4 )+ l((;A —A4)=0 (2.23)

. 1d
(g°) Tdt{ [—( A—aA)”+Ay 0, (2.24)
(¢") —(Ar) (2.25)
9 6=0. (2.26)

(2) n#2: Equating the coefficient of like powers of ¢ to
zero, we have

n+1 ;_ il —
@) o dt( od)+ (aA od)= (2.27)
(g") Ay=0, (2.28)
2 d., f'_ __1_ A — A =
(q.) o [A ” [A (0A — oA )” =0 (2.29)
(g") %(Ai’) = (2.30)
¢ 6=0. (2.31)
IN. THE CASE n2

It is evident that ¥ = 0 and § is an ignorable constant.
From (2.27) we obtain

(n+ 3)o/o)=(n—1)(A/4), (3.1)

o4 =0, n= —3. (3.2)
From (3.2) it follows that either o = 0, in which case the first
integral is trivially a constant, or 4 = 0, in which casea = 0.
As neither is of interest to us we take n# — 3 henceforth.
Integrating (3.1), we have

o"ti=KA""!,

where K, is some constant. If we make the substitution

n# -3,

(3.3)

o=p"""', A=K,p"+3, (3.4)
(2.29) becomes
PP+ (4n —3)ppp + 2n(n —2)p> =0. (3.5)
Since
A(t)=exp (f alt’) dt’) ,
we have
=(n+3)pp~", (3.6)

and the function (¢ ), for which a first integral exists, satisfies
@+ [4n/(n + 3)laa + 2(n* — 1)/(n + 3] a®* =0,
(3.7)

2512 J. Math. Phys., Vol. 26, No. 10, October 1985

which comes from (3.5). Interms of p, the first integral (2.14)
is
I = %p2n+2 2 + zpp2n+qu +p2n+2 n+l/(n + 1)

—{n=2)p"p*+p"*'p} g*. (3.8)
The invariance of I is easily checked by direct differenti-
ation. An explicit form for the integral requires 4 knowledge
of the functional expression for p. As we also require a, we
look for the solution of (3.7) and then obtain p by quadrature
of (3.6).
It is relatively straightforward to perform the first inte-
gration of (3.7). We obtain
n—1
az) .

C,(a+"+1’
+3
(3.9)

n+1 —_
n+3
ICi| + |G| #0.

(This form is suggested by the similar result found in
Kamke,'® p. 329, No. 1.204.) Before considering the next
integration of (3.9) in general, we note two particular cases. If
C, =0,

a+[n—1)/(n+3)]a*=0 (3.10)
which may be integrated to give

alt)=(K,+[(n—1/(n+3)))"", (3.11)
and from (3.6)

plt)=KyK, + [(n —1)/(n + 3)11)'/'"' ! (3.12)
Likewise, if C, =0, v

alt)=(K,+ [(n+1)/(n+3)12)"", (3.13)

plt)=KyK, + [(n 4 1)/(n + 3]}/, (3.14)

where K, and K, are arbitrary constants and K, may be set

at unity since it has only a scaling effect on the first integral.
These results are in accordance with those of Moreira* if K
is set at zero. For p as given in (3.12) the first integral is

1 )lZn +m—l)

Il=—(K+n_lt q

n+3
n—lt

5
+ K+
n+3 n+3
R @n+2/n—1) e+l
+(K + 2 lt) g
n+3 +1

and for p as given in (3.14) the first integral is

1 n+1 2 n+1 ,

e EER v e 2
) n+3 A n+3 nt+3 )Y

n+1 )2 g ! 2

t + .
n+3 / n+1 (n 43y ¢
The integration of (3.9} is not simple when both C, and C, are
nonzero. If we make the substitution

q9

)(n +3)/(n—1)

. (3.19)

+ (K + (3.16)

ult)= —a='(t), (3.17)
(3.9) becomes, after suitable rearrangement,
y |t int 1)/(n+3))"+i]‘/“_ (3.18)
@+ (n—1/(n+3)"

The solution of (3.18) may be written in parametric form
(Kamke,'° p. 30, 4.17) as
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u=k[(’7+("+”/(”“”Hl]m (3.19)
m+n—1/(n+3) !
t=Lg f (n +(n + 1)/in + 3”"-3]” dn' . (3.20)
2 (7 +n—1/(n+3)*>
In the particular case #n = 3, we obtain
Le (" 1\, 321
=gk [+ 3) o 21
and so
aft)=3(t—K,)V/[K,+(—K,)]], (3.22)
plt)={ Ky +(t — K2}V, (3.23)
Hence the differential equation
§+3t—-K)/[K,+t—-K\l+¢=0 (3.24)

possesses the first integral
I=[K,+ (t—K\P1%¢" + 2t ~ K))[K, + (¢ — K1’ lag

+ilK, + (1~ K\)1g - K, q* (3.25)
For general n, we make the substitution
n—1 2 1
= —, X 0 N 3.26
n+2 n+3x* . (3:26)
so that (3.20) is now
172 [
t=k (” “ZL 3) f (14 20 =38 g’ (3.27)

This integral may be evaluated in the case where # is an odd
integer, but, with the exception of n = 3, it is not possible to
invert the result to obtain x and so u as an explicit function of
t.

Note that, if in (3.22) K, and K, are set equal to zero,
alt) =3/t and, if K, = — K% andthelimit X,— oo istak-
en, a(t) = 3/2t. These are the results obtained by Moreira for
the case n = 3.

IV.THECASEn=2

We recall the equations for this case [(2.23) — (2.25)),
viz.,

1d 1. _

L oa) s Lisa—oit)=o, (1
1 d df1 y -

d, ..

—\4n=0. (4-3)

We observe that, when y=0, we obtain the same parametric
forms, (4.3), (3.19), and (3.20), defining (¢ ) as for the general
case. However, we proceed to consider the possibilities of
richer results in the case y=£0.

From {4.1),

o =KA4, (4.4)
so that (4.2) and (4.3) become

d 5 . 5

— — =0, 4.5

A il it (4.5)

d 5

— =0. 4.6

A 7) (4-6)
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Substituting for ¥ from (4.5) into (4.6) and integrating once,
we have

d? 5 d
Ii(as )—S%Z(asa)=M. (4.7)

It has not been possible to make any progress on the general
solution of (4.7). However, a number of particular solutions
are available. These are, for M =0,

ot)=K;t+K,, (4.8)

olt)= (Kt +K,)?, (4.9)

oft) = (Kit + K,)'", (4.10)
and for M #0,

oft) = (Kt + K,)*°, (4.11)
for which the value of M is given by

M=%8K". 4.12)
The corresponding solutions for & and y are
alt)=5K/Kt+K,), v(t)=0, (4.13)
aft)=15K,/(Kt + K,), ylt)=96K;, (4.14)
a(t)=5K,/3Kit +K3), yit)=0, (4.15)

10K 4K
= Sker k) T TS T
{4.16)

The solutions of (4.13) and (4.15) for a(t ) are the special solu-
tions obtained from the integration of (3.9) with C, and C,
zero, respectively. The corresponding first integrals are

I=Jt+K\¢P+2t+KPgqg +it+K)°¢®, (4.17)
for
g+5¢/t+K)+¢*=0, (4.18)
I=}t+K)"®@ + 6t + K)"qq + 4t + K)'*¢°
—6(t + K )'q* — 96(t + K)'%q , (4.19)
for
§+15¢/t+K)+¢*=0, (4.20)

I=Yt+ KV +3t+K)gg + 4t + KVg® + 3¢%,

(4.21)

for
G+5¢/3t+K)+¢*=0 (4.22)

and

I=)t+ K@ + 4t + KVgq + 4t + K )¢

+i+KPE+ 3+ K)g+ 3By, (4.23)

for
G+ 10473t +K)+4*=0. (4.24)

The results given in (4.17) and {(4.22) are the same as those
obtained by Moreira* when 7 is replaced by 2 in his general
formula.

V. CONCLUSION
We have seen that the differential equation
g+altlg+q =0
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possesses first integrals for more general a(t } than has pre-
viously been reported. However, it is only in the case n = 3
that it is possible to write the most general a(t ) as an explicit
function of time. For other n(+2) it is possible only to define
a(t ) parametrically. The case n = 2 is especially difficult and
only four particular functions a(t ) have been recognized.

In an attempt to avoid the impasse covered by the gen-
eral nonintegrability of (3.27) we examined the differential
equation for a(t), (3.7), for Lie symmetries. For n#3 two
generators of symmetry were found. Unfortunately they
yielded the same information as is already contained in (3.9)
and (3.20) and so added nothing to what was already known.
The integrable case, n = 3, was found to have eight genera-
tors of symmetry. Inasmuch as (3.7) is rather nonlinear and
the maximum number of generators for a second-order ordi-
nary differential equation is eight, this result was unexpect-
ed, although a similar result has been observed before.'!
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APPENDIX: THE CASEn =1

The referee has kindly supplied the results for the case
= — 1, i.e., for the equation

g+alt)g+1/q=0. (A1)
These cases emerge. For

aft)=K, (A2)
where X is constant,

I=14+Kqq+logq+ 4K’ +Kt. (A3)
For

a(t)=KtanKt+ M), (Ad4)
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where K and M are constants (either both real or both pure-
ly imaginary),
I=1@ +Ktan(Kr+ M)gg — 3 K*¢* + log g

—log cos(K + M). (A5)
Finally, for
alt)= — 1/t + M), (A6)
where, again, M is a constant,
I=4§—qq/(t+M)+logqg—loglt+ M). (A7)
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Compact quantum systems: Internal geometry of relativistic systems
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A generalization is presented of the kinematical algebra so(5), shown previously to be relevant for
the description of the internal dynamics {Zitterbewegung) of Dirac’s electron. The algebra

so(n + 2) is proposed for the case of a compact quantum system with n degrees of freedom.
Associated wave equations follow from boosting these compact quantum systems. There exists a
contraction to the kinematical algebra of a system with n degrees of freedom of the usual type, by
which the commutation relations between n coordinate operators Q; and corresponding
momentum operators P;, occurring within the so(n + 2) algebra, go over into the usual canonical
commutation relations. The so(n + 2) algebra is contrasted with the sl(/,n) superalgebra
introduced recently by Palev in a similar context: because so(n + 2) has spinor representations, its
use allows the possibility of interpreting the half-integral spin in terms of the angular momentum
of internal finite quantum systems. Connection is made with the ideas of Weyl on the possible use
in quantum mechanics of ray representation of finite Abelian groups, and so also with other recent

works on finite quantum systems. Possible directions of future research are indicated.

I. INTRODUCTION

Many years ago, Weyl' considered the unitary represen-
tation of the Lie group defined by Heisenberg’s canonical
commutation relations, and noted that it may also be consid-
ered as a ray representation of an infinite Abelian group. He
speculated that unitary ray representations of finite Abelian
groups might also prove important in quantum mechanics.
Indeed, he gave the example of the unitary ray representa-
tion

81— ioy, & —ioy, 83— ios, e— 1

of the four-element Abelian group (Klein four-group), whose
elements satisfy

(81)* = (82) = (g5)” = e (identity),

88 =838 =81, 8381 =818 = 8» (1.1)

8182 = 8281 = &3
in connection with the description of the electron’s spin.
{Here the o, are Pauli matrices.)

Recent interest in “finite quantum systems” has ap-
proached the subject in three essentially different ways.

Santhanam and co-workers* have proceeded directly
from Weyl’s position, writing the unitary ray representatives
of finite Abelian groups in exponential form in order to de-
fine finite-dimensional Hermitian analogs of Heisenberg’s
position and momentum variables, satisfying modified com-
mutation relations. A related approach has been adopted by
Gudder and Naroditsky,? and also by Stovicek and Tolar.*

Palev® has considered a simple dynamical system, the
isotropic harmonic oscillator in » dimensions, and adopted a
noncanonical quantization (in the spirit of Wigner’s® well-
known work, but along different lines) in order to arrive at
noncanonical position and momentum variables with finite-
dimensional representations.

% On leave from Department of Mathematics, University of Queensland,
Australia.
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Our own work’ and continuing interest in this area has
stemmed from the observation that Dirac’s equation for the
electron may be regarded as providing the covariant descrip-
tion of a finite quantum oscillator—the Zitterbewegung. As-
sociated with this equation, in the rest frame of the electron’s
center of mass (or in any fixed frame with definite center of
mass momentum), are internal coordinates Q; and momenta
P.(i = 1,2,3), which satisfy noncanonical commutation rela-
tions and have a finite (four-) dimensional Hermitian repre-
sentation. The kinematical algebra generated by these three
Q’sand P’sunder commutation isisomorphic tothe Liealge-
bra so(5).

The authors mentioned above, together with many oth-
ers (see Jagannathan® and Saavedra and Utreras® for refer-
ences), have speculated on the possible utility of novel kine-
matics in the description of the internal dynamics of real
systems, and in particular, of some relativistic “particles.”
However, the so(5) algebra has the important distinguishing
feature that it is known to be relevant to an important, real
relativistic physical system, because of its association with
Dirac’s equation.”

Therefore, the structure of this particular kinematical
algebra, its relation to the Heisenberg algebra and to Weyl’s
ideas, and its generalization to the case of n degrees of free-
dom (that is, » Q’s and n P’s) are of particular interest. This
interest is heightened by the thought that the heavy leptons i
and 7 may represent excited states of an internal electron
dynamics. Furthermore, we show elsewhere that the cases
n = 2 and n = 4, respectively, arise in the description of the
internal dynamics of the neutrino,'? and of the electron in a
proper time formalism.!!

Il. THE KINEMATICAL ALGEBRA SO(77 + 2)

In the description of the Zitterbewegung of the Dirac
electron in the rest frame of its center of mass,” the three
Hermitian operators Q; appear as the coordinate of the
charge relative to the center of mass. The three Hermitian
operators P; have been introduced as the corresponding rela-
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tive momentum variables. Together they generate the so(5)
kinematical algebra, with commutation relations

[0,0,] = (A /#S,, (2.12)
[P.P,] = (4ifi/A DS, (2.1b)
[Q.P,] = i, J, 2.1¢)
[0S, ] = 6,40, — 6,0) 2.1
[PS i ] = 6.4 P, — 8,,P,), (2.1¢)
[Q | = (A 2/AP,, (2.16)
[PT ] = /20, 2.1g)
[/.5,;] =0, (2.1h)
[S:)sSi] = if6uS;1 + 8;1Su — 8;xSu — 84S )- (2.1i)

Here A is a constant with the dimension of length. As has
been emphasized before,’ the appearance of at least one such
constant is inevitable in any finite quantum system incorpor-
ating Hermitian coordinate variables, whose eigenvalues are
necessarily discrete, with dimensions of length. In the appli-
cation of the so(5) algebra to the internal dynamics of the
electron, A equals the Compton wavelength of that particle.
Furthermore, in that application the operators of the algebra
(2.1) can be expressed in terms of the more familiar Dirac
matrices as

Q; = lida; B, (2.2a)

P, =(fi/A)a;, (2.2b)

J= -5, (2.2¢)
while S;; is the usual spin tensor

S;; = — Yifila,a;] = € ;Sk- (2.2d)

The relevant representation of so(5) is then the four-dimen-
sional spinor representation, in which J (= — ) is a trace-
less operator with unit square.

There is an obvious generalization of the algebra (2.1) to
the case of n degrees of freedom: simply allow the indices
there to run over 1,2,...,n instead of 1,2,3. Then the Lie alge-
bra so(n + 2) is obtained. If one defines J p(= —Jp,,
A4,B=12,.,n4+2) by setting J,;=8,;/%J,,.,

=470,y 2 =A /2P, ,andJ, ., , ., =4J,thenthe
J ,p satisfy the so(n + 2) commutation relations in standard
form

["AB’JCD] = i8,4cInp + Oppdac — Spcdup — 5ADJBC)i2 3

The fundamental spinor representations of so(n + 2), of di-

mension 27, are of particular interest. [Herep = i(n + 1)if n

is odd, and p = 4n if n is even. In the latter case there are two

inequivalent representations.] The relations of such repre-

sentations to Clifford algebras, and associated anticommu-

tation relations, are well known. Only in these representa-

tions does the operator J, which is traceless in every repre-
sentation, have unit square, so that its eigenvalues are + 1.
Inspection of (2.1c) suggests that one is then, in an intuitive
sense, as close as possible to the canonical commutation rela-
tions

[gip;] = b1, (2.4)
where [ is the unit operator. (Note that the commutator of
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any Q; and P, represented by finite matrices must be trace-
less.)

Various dynamics are possible within the framework of
the so(n + 2) algebra, corresponding to various choices of
Hamiltonian operator H in the enveloping algebra of the
particular representation at hand. In the case » = 3, when
the fundamental (Dirac) spinor representation is chosen, the
only true so(3) scalars available (as distinct from pseudosca-
lars) are J(= — B) and I (identity). With H of the form
¢l +d B, where ¢ and d are numbers with dimensions of
energy, the commutation relations (2.1f) and (2.1g), together
with Heisenberg’s equation of motion

o . dA

ihA=[AH], A= = (2.5)
imply

0, =dAY#)P,, P, = —(4d/AQ,, (2.6)
so that - .

Q, = — (4d¥/#)Q,, P, = —(4d*/#P,. (2.7)

Thus harmonic oscillator dynamics is singled out in this
case.” This would not be true for other representations of
80(5), nor for larger values of n, even in the fundamental
spinor representations.

Nevertheless, because the constants 4 and A are avail-
able, dimensionless creation and annihilation operators can
always be defined, whatever the representation and whatever
the dynamics, as

A, = Q,/A +iA /28)P,,
AT =Q/A —id /28)P,,

The 4, is Hermitian conjugate to 4;, and relations (2.1)
become

[4:,4;] =0=[4,", 4],

[4:,4,7) = 6,7 + (2i/8)S,,

[4,7]1= —24, [4%T]= +24",
together with (2.1h) and (2.1i) and relations like (2.1d) and

(2.1e), which express the n-vector nature of 4; and 4,%.
The relations (2.1) are also equivalent to

[[4:,4;1], 4] = 28,4, + 8 A, — 84 4;),
[[4: 4], 1] = 2 — 8,4, " + 8 A,t — 85 4,Y),
[[4:4,7],[4c 4,"]]
= 2(6,1c [AI’ AJT] - 5’1- [A,-, AkT]
+ 6jk [Ai’ AIT] - 5:’1 [Ak’ Aj*])
[4:, 4] =0=[4%4,"],
in which form they show most clearly how these operators

differ from the ones introduced for a finite quantum oscilla-
tor by Palev.” His operators satisfy

(2.8)
i=1.2,..,n

(2.9)

(2.10)

[{AiT’Aj}’Ak] = —5ikAj +6ijAk!
[{AIT’ Aj}!AkT] = 6jkAiT - 6ijAkT’

[{4.% 4,3, {4 4} =8, (4,7, 4} — 84} {4,1, 4,1,
(2.11)

{Ai’Aj} =0= {AiT’ AjT}’
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and define the Lie superalgebra sl(/,n). Like so(n + 2), this
has infinitely many inequivalent irreducible Hermitian re-
presentations.

Palev considered his algebra as a dynamical algebra as-
sociated with a particular Hamiltonian

H = [#n/(n ~ 1)1{4,}, 4,}, (2.12)

for an isotropic oscillator. [Here the constant @ is intro-
duced, with dimensions of {time)~', but Palev also needs to
introduce a constant with dimensions of a length in order to
define coordinate and momentum operators.] In contrast,
we view the so{n + 2) algebra as kinematical. It always ad-
mits as a particular dynamics, that associated with the Ha-
miltonian

H=(fiw/2n)[A,}, 4,], {2.13)
which leads to the harmonic oscillator equations

A, = —iwd;,, A'= +iwd?, (2.14)
or equivalently, to Egs. (2.7) with

d = {io. {2.15)

As aiready remarked, this is the only dynamics permitted in
the case of the fundamental spinor representation of so(5)
(n = 3), when it is directly relevant to the description of the
Zitterbewegung of the electron as a finite quantum oscilla-
tor.” No doubt Palev’s algebra (without reference to ) could
also be viewed more widely as a kinematical algebra admit-
ting a variety of representations, and a variety of dynamics in
most representation.

Another important distinction between the so(n + 2)
and sl(/,n) algebras relates to the representations of the so{n)
subalgebra that can appear. This subalgebra is associated in
both cases with the “angular momentum” of the finite quan-
tum system. Since spinor representation of so(n + 2} are al-
lowed (as for the electron), then spinor representations of the
so(n) subalgebra can be accomodated. However, the so(n)
subalgebra of sl(/,n) appears in the chain

so(n) < sl{n) < sl{/,n), (2.16)

and only tensor representations of so(n) appear in the repre-
sentations of sl{n). Thus Palev’s algebra can only describe
finite quantum systems with integral angular momentum or
spin.

We comment at the end about the noncompact versions
of the so(n + 2) algebras.

. RELATIONSHIP TO THE HEISENBERG ALGEBRA
AND TO WEYL’S IDEA

The so{n +2) algebra, which is of dimension
i{n + 1)(n + 2), is generated by the n Q’s and n P’s under
commutation, as Egs. (2.1) show. In contrast, n canonical
Q’sand P’s generate the Heisenberg algebra, which is of the
smaller dimension (2n + 1):
[qn'P.'] =if 6;,-1,

[9.4;1=0=[p,p:], (3.1)

[1,g:]=0=[Lp].
These may be compared with Egs. (2.1a}~(2.1¢), (2.1e), and

(2.1f). However, it is more appropriate to compare the
so(n + 2) algebra with the kinematical Lie algebra k,, , also of
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dimension (n + 1)(n + 2), obtained by extending the Hei-
senberg algebra by the algebra so(n) of rotations; introduce

the In{n —1) so{n) (angular momentum) operators
0= —1; ij=1,2,.,n) satisfying

[qisljk] = iﬁ(sikqj - 5ijqk)’

[Pi»ljk] = iﬁ(aikpj - 5:‘ij), [I!Iij] =0, (3.2)

[Zijolia ] = ih Bucdy + Sl — Sy — Suli),

which may be compared with Egs. (2.1d), (2.1e), (2.1h), and
(2.1i). Any representation of the Heisenberg algebra can be
extended to a representation of k,, by setting

Ly = q;px — qup;- (3-3)
However, there are also representations of k,, in which the
relation (3.3) does not hold. We may always add one or more
“spin terms” to the right-hand side of Eq. (3.3), thus ensuring
in particular that spinor representations of so(n) can occur.

It is noteworthy that, although there is (up to equiv-
alence) only one unitary representation of the (Weyl) group
associated with the Heisenberg Lie algebra, by von Neu-
mann’s theorem, there are evidently infinitely many inequi-
valent unitary representations (with various spin content) of
the group K,, whose Lie algebra is k,, . Corresponding to this
in our case is the fact that there are infinitely many inequiva-
lent unitary representations of the group SO(n + 2).

There is a contraction'? from the algebra so(n + 2) to
k., ; this emphasizes the naturalness of the choice of so(n + 2)
as an appropriate kinematical algebra for finite quantum sys-
tems. To see this without going into details, define

G =€Q; b =6€P, T=€152'I’ 7ij=sij’ (3.4
with Q,, p;, etc., as in (2.1) and ¢,, €, real parameters. Then

[éi’qj] =ia Z/ﬁ}(fl)zlm

[6.5;) = (4#/A e,

(4::8;] = b1,

[@:.1] = —iA*/A)e)D,,

[5:] ] = (4if/2 )€ G,
while the remaining relations are as in Eqgs. (3.2), with g;
replacing g;, etc. When €, and ¢, are set to zero, Egs. (3.5)
reduce to Egs. (3.1). If €, is set to zero but not €, (or vice
versa), the Lie algebra obtained can be seen to be that of the
Euclidean group E (n + 1). (These cases correspond physical-
ly to an oscillator or free particle.}) This indicates that the
contraction from so(n + 2) to k,, can proceed in two stages,
via e{n + 1) (and that there are two distinct routes along
which this may be accomplished).

There is also a close relationship between the fundamen-
tal spinor representations of the so(n + 2) algebra, and uni-
tary ray representations of finite Abelian groups, so that con-
tact can be made with Weyl’s idea,’ and also the work of
Santhanam,? mentioned in the Introduction. Consider, for
example, thecasen = 1(one Qand one P )and the fundamen-
tal spinor representation of so(3), which is two dimensional.
We may take in this case

0=14o, P=(#/i)o, (3.6)
where o, and o, are Pauli matrices. Then Eqgs. (2.1) show
(3.7)

(3.5)

J =0,
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while there are no so(n) operators in this case. Define the
unitary operators

4(6) = explil6 /1)Q),
Then

A (m) = ioy,

B(¢) = explildAP /24)). (3.8)

B(7) = io,, (3.9)

anditcanbeseen that 4 (7) and B () generate under multipli-
cation the unitary ray representation of the four-element
Abelian group defined by Eqgs. (1.1), In contrast, the set of all
unitary operators 4 (8 ), B (¢), with 8,4€[0,27], generate un-
der multiplication a two-valued representation of SO(3) [that
is, a true representation of SU(2}].

Note that if we started with the unitary ray representa-
tion of the Abelian group, and hence with 4 (7) and B (7}, we
could define

Q= —(iA/mlogd (m), P= — (2ifi/A )log B(7),

(3.10)
and recover the so(3) algebra generated under commutation
by @ and P. On the other hand, if we started with a unitary
representation of su(2), we would more naturally identify Q
and P by setting

o _pdMO)  p_ _iidB@)
dé le-o 28 dé ls-o
(3.11)
IV. CONCLUDING REMARKS

Of various approaches to the description of a finite
quantum system with »# degrees of freedom, the one using the
so(n + 2) kinematical algebra is distinguished primarily by
the fact that it is known to be relevant to real relativistic
systems.”'%!! Furthermore, it has been shown that there is a
well-defined relationship between the so(r + 2) algebra and
the kinematical algebra k, of a system with n degrees of
freedom of the usual (noncompact) type. This relationship is
defined by a group contraction.

Of course, we do not claim that so{n + 2) is the only
algebra which could have such a relationship with k,,. How-
ever, the existence of this relationship suggests the possibil-
ity of studying a class of finite quantum systems which are
well-defined analogs of infinite quantum systems, and also
the connection between the two, through the contraction
process. One could start with the finite quantum oscillator,
as in Eqgs. (2.7), for example, but it would be interesting also
to construct finite analogs of other well-known dynamical
systems, such as the Kepler system, and to investigate their
symmetry and dynamical algebras.

Another important distinguishing feature of the
so{n + 2) algebra which has been emphasized above is the
existence of spinor representations. This makes possible the
“explanation” of the half-integral spin of “‘elementary” par-
ticles as the angular momentum of internal finite quantum
systems. Such an idea dates back to Schrodinger’s work on
Dirac’s electron,'® and has been further brought out in our
own recent efforts.”

Finite systems can be accommodated naturally in the
vector space setting of quantum mechanics—we merely
need to consider finite-dimensional subspaces of Hilbert
space. On the other hand, one might suppose that they have
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no classical counterparts. That this is not necessarily the case
is shown, for example, by the recent construction of a classi-
cal analog of Dirac’s spinning electron.'# (In this connection,
we mention also the earlier work by Grossmann and
Peres.”)

There is clearly more to be done towards understanding
the relationship of finite quantum systems to the more famil-
iar dynamical systems of classical and quantum mechanics.
The use of the so{n + 2) kinematical algebra defines a class of
finite systems for which some possible directions of future
research seem reasonably well defined.

Once the commutation relations of the internal dynami-
cal variables have been recognized, we can also take the infi-
nite-dimensional representations of the internal algebra
so(n + 2). These then represent many-body systems with »
degrees of freedom in the center of mass frame. Relativistic
theories of composite atoms or hadrons,'® or relativistic os-
cillator and rotator,'” belong to this category. The boosting
of such a system (i.e., induced representations of the Poin-
caré group) gives relativistic finite-component wave equa-
tions in the case of finite-dimensional representations, and
infinite-component wave equations in the case of composite
systems.

In the infinite-dimensional case one can use perhaps
more appropriately the unitary representations of the non-
compact form of the algebras so(p,q). The exact form of the
noncompact form depends on the physical interpretation of
the generators as Hermitian operators. For example, the
s0(3,2) form of so(5) has been used extensively.''¢'®
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We consider Schrédinger operators H in L %(R"), n € N, with countably infinitely many local
singularities of the potential which are separated from each other by a positive distance. It is
proved that due to locality each singularity yields a separate contribution to the deficiency index
of H. In the special case where the singularities are pointlike and the potential exhibits certain
symmetries near these points we give an explicit construction of self-adjoint boundary conditions.

l. INTRODUCTION

Our interest in the computation of deficiency indices
and in the construction of self-adjoint boundary conditions
for singular Schrodinger operators stems from several inves-
tigations of certain idealized model Hamiltonians, so-called
point interactions.'~'°

These analytically solvable models have a long history
and play an important role in nuclear and solid state physics
(cf,, e.g., Ref. 9 and the literature therein). In this paper we
particularly study the mathematical structure behind point
interactions and some of their generalizations (interactions
concentrated on submanifolds).

In Sec II we consider Schrddinger operators H in
L*R"), n € N with countably infinitely many local singulari-
ties of the potential ¥ which are uniformly separated from
each other by a distance € > 0. Our main result (Theorem 2.5)
concerning the deficiency index of H confirms the intuitive
statement that due to locality each singularity should sepa-
rately yield a contribution to the total deficiency index of H.
Our proof is patterned after a result of Behncke'' (c.f. also
Ref. 12) where the corresponding problem is solved for
strongly singular Dirac operators. Theorem 2.5 is general
enough not only to include the case of point interactions in
addition to V but also to allow additional interactions con-
centrated on submanifolds (like -shell interactions®™).

Section II represents the first step in the analysis, name-
ly to reduce the computation of the deficiency indices of a
Schrédinger operator H with several singularities to that of
several Schrodinger operators H; with a single singularity.
The second step, the explicit construction of self-adjoint
boundary conditions for H;, is studied in Sec. III. In the
special case where the singularity in H; is pointlike and H;
exhibits certain symmetries around this point such that H;
reduces to a direct sum of ordinary Schrédinger operators in
L*({0,)) (a case particularly important in applications) a
general treatment of singular boundary conditions at the ori-
gin is presented. In particular, we study systems of the type

—d® A—1) 7y
a7 A T

+%+W(r), r>0, (L1)

® On leave of absence from Institut fiir Theoretische Physik, Universitit
Graz, Austria.
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with We L= ((0,c0)) real valued, } <A <3, 0,y € R, 0<a < 2.

Our methods rely heavily on the use of (ir)regular solu-
tions associated with (1.1) and on corresponding Volterra
integral equations. This yields a generalization of previous
results of Rellich,'* where the case @ = 0 in (1.1) has been
considered.

1. DEFICIENCY INDICES OF SINGULAR SCHRODINGER
OPERATORS

In this section we show that countably infinitely many
local singularities of the potential which are uniformly sepa-
rated from each other by a distance €> 0 do not interfere
when considering the total deficiency index of the corre-
sponding Schrodinger operator.

We introduce the following.

Hypothesis H: Let JCZ\ {0} be a finite or countably
infinite index set, J, = Ju{0}.

(i) 2; CR", n € N is a compact set of Lebesgue measure
zeroforalljeJ, 2, =4.

(i) V;eL} (R"\Z;) is real valued, jeJ, and
(a) supp (¥;) is compact for all j € J, or (b) ¥; are bounded
from below on every compact subset of R” \ 2, for all j € J,,

(iiij For some €>0:  dist({supp(V;u;},
(supp(¥; JuZ; })> € for all j, ' € Jy, j/"

(iv) We L= (R") is real-valued.

For notational convenience we will also use the abbre-
viations

supp(¥;uZ; if condition Hiii)(a) holds,

A; = {2, if condition Hiii)(b) or conditions
H(ii)(a) and H(ii)(b) hold, jeJ,, (2.1)

A= ud, S=u3, Vix=Y Vix),

jeUJo ! jEUJo ! =) ,;0 ](X)

and note that % is closed and of Lebesgue measure zero by
hypotheses H(i) and Hiiii).

As our first technical result we state the following.

Lemma 2.1: Assu